Skip to main content
Log in

Electrosprayed sperical ethylcellulose nanoparticles for an improved sustained-release profile of anticancer drug

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A solution treated by electrospraying often has a relatively low polymer concentration, thereby overlooking that pure solvent can be used as an additional working fluid. In this study, a modified coaxial electrospraying, characterized by the usage of pure solvent as a shell fluid, was developed to generate nano drug delivery systems for providing the desired drug sustained-release profiles. Ethylcellulose (EC) and tamoxifen citrate (TC) were exploited as a polymer matrix and a poorly water-soluble anticancer model, respectively. Comparing with those particles prepared using a traditional single-fluid process, the TC-loaded EC particles from the modified coaxial processes have a rounder shape, a smaller diameter, and a highly compact inner structure, as demonstrated by the scanning electron microscopic images. Given the favored secondary interactions between TC and EC, all the particles are similarly amorphous composites, as verified by their X-ray patterns and attenuated total reflectance–Fourier transform infrared spectra. Nevertheless, the rounder nanoparticles from the coaxial processes were able to provide a better drug sustained-release profile than their counterparts in terms of smaller initial burst release, longer release time period, and shorter time tailing-off later stage. Both microformation mechanisms of the medicated particles and drug sustained-release mechanisms are suggested. The protocols developed here facilitate the generation of functional nanomaterials from cellulose and its derivatives owing to breaking the traditional concept of electrospraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad Z, Zhang HB, Farook U, Edirisinghe M, Stride E, Colombo P (2008) Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J R Soc Interface 5:1255–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29:196–212

    Article  CAS  PubMed  Google Scholar 

  • Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    Article  CAS  PubMed  Google Scholar 

  • Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–1551

    Article  CAS  Google Scholar 

  • Bohr A, Wan F, Kristensen J, Dyas M, Stride E, Baldursdottír S, Edirisinghe M, Yang M (2015) Pharmaceutical microparticle engineering with electrospraying: the role of mixed solvent systems in particle formation and characteristics. J Mater Sci Mater Med 26:1–13

    Article  CAS  Google Scholar 

  • Cao L, Luo J, Tu K, Wang LQ, Jiang H (2014) Generation of nano-sized core–shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B 115:212–218

    Article  CAS  Google Scholar 

  • Chakraborty S, Liao IC, Adler A, Leong KW (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Liu ZP, Yu DG, Zhang SP, Bligh SWA, Zhao N (2014) Electrosprayed core-shell nanopartciles of PVP and shellac for furnishing biphasic controlled release of ferulic acid. Colloid Polym Sci 292:2089–2096

    Article  CAS  Google Scholar 

  • Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64

    Article  CAS  Google Scholar 

  • Eltayeb M, Stride E, Edirisinghe M (2015) Preparation, characterization and release kinetics of ethylcellulose nanoparticles encapsulating ethylvanillin as a model functional component. J Funct Foods 14:726–735

    Article  CAS  Google Scholar 

  • Eltayeb M, Stride E, Edirisinghe M, Harker A (2016) Electrosprayed nanoparticle delivery system for controlled release. Mater Sci Eng C 66:138–146

    Article  CAS  Google Scholar 

  • Enayati M, Ahmad Z, Stride E, Edirisinghe M (2010) One-step electrohydrodynamic production of drug-loaded micro-and nanoparticles. J R Soc Interface 7:667–675

    Article  CAS  PubMed  Google Scholar 

  • Enayati M, Chang MW, Bragman F, Edirisinghe M, Stride E (2011) Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A 382:154–164

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gao Y, Zhao D, Chang MW, Ahmad Z, Li JS (2016) Optimising the shell thickness-to-radius ratio for the fabrication of oil-encapsulated polymeric microspheres. Chem Eng J 284:963–971

    Article  CAS  Google Scholar 

  • Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781

    Article  CAS  PubMed  Google Scholar 

  • Hong X, Edirisinghe M, Mahalingam S (2016) Beads, beaded-fibres and fibres: tailoring the morphology of poly (caprolactone) using pressurised gyration. Mater Sci Eng C 69:1373–1382

    Article  CAS  Google Scholar 

  • Huang LY, Yu DG, Branford-White C, Zhu LM (2012) Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. J Mater Sci 47:1372–1377

    Article  CAS  Google Scholar 

  • Illangakoon UE, Yu DG, Ahmad BS, Chatterton NP, Williams GR (2015) 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. Int J Pharm 495:895–902

    Article  CAS  PubMed  Google Scholar 

  • Illangakoon UE, Mahalingam S, Wang K, Cheong YK, Canales E, Ren GG, Cloutman-Green E, Edirisinghe M, Ciric L (2017) Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters. Mater Sci Eng C 74:315–324

    Article  Google Scholar 

  • Jin M, Yu DG, Wang X, Geraldes CFGC, Williams GR, Bligh SWA (2016) Electrospun contrast agent-loaded fibers for colon-targeted MRI. Adv Healthc Mater 5:977–985

    Article  CAS  PubMed  Google Scholar 

  • Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Kim SS (2011) Synthesis of biodegradable triple-layered capsules using a triaxial electrospray method. Polymer 52:3325–3336

    Article  CAS  Google Scholar 

  • Labbaf S, Ghanbar H, Stride E, Edirisinghe M (2014) Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol Rapid Commun 35:618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yu DG, Williams GR, Wang ZH (2014a) Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process. PLoS ONE 9:e92106

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang ZH, Yu DG, Williams GR (2014b) Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process. Nanoscale Res Lett 9:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Xu X (2008) Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet. Int J Pharm 352:225–230

    Article  CAS  PubMed  Google Scholar 

  • Liu ZP, Cui L, Yu DG, Zhao ZX, Chen L (2014) Electrosprayed core-shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head. Int J Nanomed 9:1967–1977

    Google Scholar 

  • Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, Ahmad Z (2017) Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today 22:157–165

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam MK, Mortazavi SM, Khaymian T (2015) Micro/nano-encapsulation of a phase change material by coaxial electrospray method. Iran Polym J 24:759–774

    Article  CAS  Google Scholar 

  • Mohan Yallapu M, Ray Dobberpuhl M, Michele Maher D, Jaggi M, Chand Chauhan S (2012) Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13:120–128

    Article  Google Scholar 

  • Nguyen DN, Palangetic L, Clasen C, Van den Mooter G (2016a) One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying. J Pharm Pharmacol 68:625–633

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DN, Clasen C, Van den Mooter G (2016b) Pharmaceutical applications of electrospraying. J Pharm Sci 105:2601–2620

    Article  CAS  PubMed  Google Scholar 

  • Parhizkar M, Reardon PJ, Knowles JC, Browning RJ, Stride E, Pedley RB, Harker AH, Edirisinghe M (2016) Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery. Nanomedicine 12:1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J (2010) Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv 7:705–719

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  CAS  PubMed  Google Scholar 

  • Prasertmanakit S, Praphairaksit N, Chiangthong W, Muangsin N (2009) Ethyl cellulose microcapsules for protecting and controlled release of folic acid. AAPS PharmSciTech 10:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Article  CAS  Google Scholar 

  • Silmara CL, de Renata A, Andre CA, Fabiana CAC, Pedro PC, Hernane SB, Wilton RL (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose 23:737–748

    Article  Google Scholar 

  • Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J (2011) Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Bio Med 236:20–29

    Article  CAS  Google Scholar 

  • Van Duong T, Van den Mooter G (2016a) The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin Drug Deliv 13:1681–1694

    Article  PubMed  Google Scholar 

  • Van Duong T, Van den Mooter G (2016b) The role of the carrier in the formulation of pharmaceutical solid dispersions. Part I: crystalline and semi-crystalline carriers. Expert Opin Drug Deliv 13:1583–1594

    Article  PubMed  Google Scholar 

  • Wan F, Maltesen MJ, Andersen SK, Bjerregaard S, Foged C, Rantanen J, Yang M (2014) One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle. Pharm Res 31:1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Roman M (2011) Formation and properties of chitosan—cellulose2 nanocrystal polyelectrolyte—macroion complexes for drug delivery applications. Biomacromol 12:1585–1593

    Article  CAS  Google Scholar 

  • Wang X, Li X, Stride E, Huang J, Edirisinghe M, Schroeder C, Donald A (2010) Novel preparation and characterization of porous alginate films. Carbohydr Polym 79:989–997

    Article  CAS  Google Scholar 

  • Wen HF, Yang C, Yu DG, Li XY, Zhang DF (2016) Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chem Eng J 290:263–272

    Article  CAS  Google Scholar 

  • Wu YH, Yu DG, Li JJ, Wang Q, Li HP, Li XY (2017) Medicated multiple-component polymeric nanocomposites fabricated using electrospraying. Polym Polym Compos 25:57–62

    CAS  Google Scholar 

  • Xie J, Ng WJ, Lee LY, Wang CH (2008) Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci 317:469–476

    Article  CAS  PubMed  Google Scholar 

  • Yan J, White K, Yu DG, Zhao XY (2014) Sustained release multiple-component cellulose acetate nanofibers fabricated using a modified coaxial electrospinning process. J Mater Sci 49:538–547

    Article  CAS  Google Scholar 

  • Yang C, Yu DG, Pan D, Liu XK, Wang X, Bligh SWA, Williams GR (2016) Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial processes. Acta Biomater 35:77–86

    Article  PubMed  Google Scholar 

  • Yang GZ, Li JJ, Yu DG, He MF, Yang JH, Williams GR (2017) Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater 53:233–241

    Article  CAS  PubMed  Google Scholar 

  • Yu DG, Yu JH, Chen L, Williams GR, Wang X (2012) Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym 90:1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Yu DG, Li XY, Wang X, Chian W, Liao YZ, Li Y (2013) Zero-order drug release cellulose acetate nanofibers prepared using coaxial electrospinning. Cellulose 20:379–389

    Article  CAS  Google Scholar 

  • Yu DG, Xu Y, Li Z, Du LP, Zhao BG, Wang X (2014) Coaxial electrospinning with mixed solvents: from flat to round Eudragit L100 nanofibers for better colon-targeted sustained drug release profiles. J Nanomater 2014. Article ID967295

  • Yu DG, Li XY, Wang X, Yang JH, Bligh SWA, Williams GR (2015) Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mat Interfaces 7:18891–18897

    Article  CAS  Google Scholar 

  • Yu DG, Li JJ, Zhang M, Williams GR (2017) High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun 53:4542–4545

    Article  CAS  Google Scholar 

  • Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, Su Z (2010) Particle size affects the cellular response in macrophages. Eur J Pharm Sci 41:650–657

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447

    Article  CAS  PubMed  Google Scholar 

  • Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed 8:2997–3017

    Google Scholar 

  • Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the following projects are appreciated: the Natural Science Foundation of China (Nos. 51373101 and 51403128) and the College Student Innovation Project of USST (Nos. SH2017189-190-191).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng-Guang Yu or Hao-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Zheng, ZB., Yu, DG. et al. Electrosprayed sperical ethylcellulose nanoparticles for an improved sustained-release profile of anticancer drug. Cellulose 24, 5551–5564 (2017). https://doi.org/10.1007/s10570-017-1498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1498-0

Keywords

Navigation