Skip to main content
Log in

Pharmaceutical microparticle engineering with electrospraying: the role of mixed solvent systems in particle formation and characteristics

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, acetone, and an anti-solvent, methanol, for PLGA were studied in different ratios. Properties of the spraying solutions were examined and the resulting microparticles were characterized with regard to size, morphology, porosity, solid state form, surface chemistry and drug release. Particle formation was strongly influenced by the polymer molecular conformation during droplet formation and by the anti-solvent concentration during droplet drying. A strong correlation was found between particle morphology and the solubility of the polymer in the solvent mixtures. The lack of chain entanglements in droplets containing anti-solvent resulted in compact polymer conformation and grain-like particle morphology. Further, the early precipitation of polymer and low chain interaction with increasing content of anti-solvent resulted in surface enrichment of drug (from 10 and 20 % up to 41 and 57 % respectively), also demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci. 2008;105(33):11613–8.

    Article  Google Scholar 

  2. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  Google Scholar 

  3. Chow A, Tong H, Chattopadhyay P, Shekunov B. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  Google Scholar 

  4. York P. Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today. 1999;2(11):430–40.

    Article  Google Scholar 

  5. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  Google Scholar 

  6. Weers JG, Tarara TE, Clark AR. Design of fine particles for pulmonary drug delivery. Expert Opin Drug Deliv. 2007;4(3):297–313.

    Article  Google Scholar 

  7. Chew NYK, Tang P, Chan HK, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52.

    Article  Google Scholar 

  8. Walton DE, Mumford CJ. The morphology of spray-dried particles: the effect of process variables upon the morphology of spray-dried particles. Chem Eng Res Des. 1999;77(5):442–60.

    Article  Google Scholar 

  9. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañan-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 2002;295(5560):1695–8.

    Article  Google Scholar 

  10. Abeyewickreme A, Kwok A, McEwan JR, Jayasinghe SN. Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integr Biol. 2009;1(3):260–6.

    Article  Google Scholar 

  11. Bohr A, Kristensen J, Stride E, Dyas M, Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. IntJPharm. 2011;412(1–2):59–67.

    Google Scholar 

  12. Almeria B, Deng W, Fahmy TM, Gomez A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci. 2010;343(1):125–33.

    Article  Google Scholar 

  13. Bohr A, Kristensen J, Dyas M, Edirisinghe M, Stride E. Release profile and characteristics of electrosprayed particles for oral delivery of a practically insoluble drug. J R Soc Interface. 2012;9(75):2437–9.

    Article  Google Scholar 

  14. Enayati M, Ahmad Z, Stride E, Edirisinghe M. Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet. Curr Pharm Biotechnol. 2009;10(6):600–8.

    Article  Google Scholar 

  15. Yao J, Kuang Lim L, Xie J, Hua J, Wang CH. Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci. 2008;39(11):987–1002.

    Article  Google Scholar 

  16. Park CH, Lee J. Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci. 2009;114(1):430–7.

    Article  Google Scholar 

  17. Xue L, Mao L, Cai Q, Yang X, Jin R. Preparation of amino acid ester substituted polyphosphazene microparticles via electrohydrodynamic atomization. Polym Adv Technol. 2010;22(12):2009–16.

    Article  Google Scholar 

  18. Wang FJ, Wang CH. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release. 2002;81(3):263–80.

    Article  Google Scholar 

  19. Raula J, Eerikainen H, Kauppinen EI. Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. Int J Pharm. 2004;284(1–2):13–21.

    Article  Google Scholar 

  20. Gilchrist SE, Rickard DL, Letchford K, Needham D, Burt HM. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres. Mol Pharm. 2012;9(5):1489–501.

    Google Scholar 

  21. Smallwood I. Handbook of organic solvent properties. New York: Butterworth-Heinemann; 1996.

    Google Scholar 

  22. Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45(9):2959–66.

    Article  Google Scholar 

  23. Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer. 2005;46(10):3372–84.

    Article  Google Scholar 

  24. Luo CJ, Stride E, Edirisinghe M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules. 2012;45(11):4669–80.

    Article  Google Scholar 

  25. Zhang W, Chen M, Zha B, Diao G. Correlation of polymer-like solution behaviors with electrospun fiber formation of hydroxypropyl-[small beta]-cyclodextrin and the adsorption study on the fiber. Phys Chem Chem Phys. 2012;14(27):9729–37.

    Article  Google Scholar 

  26. Ré M-I. Formulating drug delivery systems by spray drying. Dry Technol. 2006;24(4):433–46.

    Article  Google Scholar 

  27. Graessley W. The entanglement concept in polymer rheology. The Entanglement Concept in Polymer Rheology, vol. 16., Advances in polymer scienceBerlin: Springer; 1974. p. 1–179.

    Book  Google Scholar 

  28. Wool RP. Polymer entanglements. Macromolecules. 1993;26(7):1564–9.

    Article  Google Scholar 

  29. Ying Q, Chu B. Overlap concentration of macromolecules in solution. Macromolecules. 1987;20(2):362–6.

    Article  Google Scholar 

  30. Colby RH, Rubinstein M, Viovy JL. Chain entanglement in polymer melts and solutions. Macromolecules. 1992;25(2):996–8.

    Article  Google Scholar 

  31. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci. 2002;99(19):12001–5.

    Article  Google Scholar 

  32. Grosberg AY, Khokhlov AR, Jelinski LW. Giant molecules: here, there, and everywhere. Am J Phys. 1997;65(12):1218–9.

    Article  Google Scholar 

  33. Zhou XD, Zhang SC, Huebner W, Ownby PD, Gu H. Effect of the solvent on the particle morphology of spray dried PMMA. J Mater Sci. 2001;36(15):3759–68.

    Article  Google Scholar 

  34. Gañan-Calvo AM, Davila J, Barrero A. Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci. 1997;28(2):249–75.

    Article  Google Scholar 

  35. Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release. 2009;133(1):37–43.

    Article  Google Scholar 

  36. Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release. 2006;112(2):167–74.

    Article  Google Scholar 

  37. Wu Y, Clark RL. Controllable porous polymer particles generated by electrospraying. J Colloid Interface Sci. 2007;310(2):529–35.

    Article  Google Scholar 

  38. Edward JT. Molecular volumes and the Stokes-Einstein equation. J Chem Educ. 1970;47(4):261.

    Article  Google Scholar 

  39. Paudel A, Van den Mooter G. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent Spray-drying. Pharm Res. 2012;29(1):251–70.

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank the Danish Agency for Science, Technology and Innovation and Veloxis Pharmaceuticals A/S for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Bohr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohr, A., Wan, F., Kristensen, J. et al. Pharmaceutical microparticle engineering with electrospraying: the role of mixed solvent systems in particle formation and characteristics. J Mater Sci: Mater Med 26, 61 (2015). https://doi.org/10.1007/s10856-015-5379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5379-5

Keywords

Navigation