Skip to main content
Log in

Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb(II) and methylene blue from aqueous solution

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Pyromellitic dianhydride-modified nanoporous magnetic cellulose–chitosan microspheres (PNMCMs) were designed and synthesized to introduce abundant carboxyl groups onto the basic microstructure. The novel microspheres were studied by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Subsequently, a batch technique was applied to investigate various environmental parameters that could affect the adsorption behavior of the PNMCMs. Due to its nanoporous structure and large quantity of carboxyl groups, the cellulose/chitosan-based bioadsorbent exhibited excellent adsorption performance for removal of Pb(II) ions and methylene blue (MB) from aqueous solution, with maximum adsorption capacity of 384.6 and 833.3 mg/g, respectively. Furthermore, the adsorption kinetics and isotherms of Pb(II) ions and MB on PNMCMs obeyed the pseudo-second-order and Langmuir isotherm models, and the rate of adsorption was found to be controlled by film diffusion. Finally, the PNMCMs with adsorbed Pb(II) and MB could be easily regenerated using HCl, retaining removal capacity of almost 89% after six repeated uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu SJ (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120. doi:10.1166/jbmb.2008.302

    Article  Google Scholar 

  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665. doi:10.1007/s10570-014-0168-8

    Article  CAS  Google Scholar 

  • Bingol D, Tekin N, Alkan M (2010) Brilliant yellow dye adsorption onto sepiolite using a full factorial design. Appl Clay Sci 50:315–321. doi:10.1016/j.clay.2010.08.015

    Article  CAS  Google Scholar 

  • Boyd GE, Adamson AW, JrLS Myers (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848

    Article  CAS  Google Scholar 

  • Cui HZ, Li YL, Liu S, Zhang JF, Zhou Q, Zhong R, Yang ML, Hou XF (2017) Novel Pb(II) ion-imprinted materials based on bis-pyrazolyl functionalized mesoporous silica for the selective removal of Pb(II) in water samples. Carbohydr Polym 241:165–177. doi:10.1016/j.micromeso.2016.12.036

    CAS  Google Scholar 

  • Elschner T, Reishofer D, Kargl R, Grießer T, Heinze T, Kleinschek KS (2016) Reactive cellulose-based thin films-a concept for multifunctional polysaccharide surfaces. RSC Adv 6:72378–72385. doi:10.1039/c6ra14227c

    Article  CAS  Google Scholar 

  • Fan LL, Luo CN, Sun M, Li XJ, Qiu HM (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloid Surf B 103:523–529. doi:10.1016/j.colsurfb.2012.11.006

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi:10.1021/bm400178m

    Article  CAS  Google Scholar 

  • Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826. doi:10.1021/am200300u

    Article  CAS  Google Scholar 

  • Habiba U, Siddiqueb TA, Joo TC, Salleh A, Ang BC, Afifi AM (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr Polym 157:1568–1576. doi:10.1016/j.carbpol.2016.11.037

    Article  CAS  Google Scholar 

  • Hameed BH, Din AM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825. doi:10.1016/j.jhazmat.2006.07.049

    Article  CAS  Google Scholar 

  • He Z, Yu JX, Qi Y, Chi RA (2012) PMDA-modified biosorbents for enhancement adsorption of basic magenta. Environ Earth Sci 70:635–642. doi:10.1007/s12665-012-2147-4

    Article  Google Scholar 

  • Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742. doi:10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  • Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigments 51:25–40

    Article  CAS  Google Scholar 

  • Kavianinia I, Plieger PG, Kandile NG, Harding DR (2012) Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper(II). Carbohydr Polym 90:875–886. doi:10.1016/j.carbpol.2012.06.014

    Article  CAS  Google Scholar 

  • Khanday MA, Asif M, Hameed BH (2017) Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int J Biol Macromol 95:895–902. doi:10.1016/j.ijbiomac.2016.10.075

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) The mechanism of cobalt biosorption. Biotechnol Bioeng 7:823–831. doi:10.1002/bit.260330705

    Article  Google Scholar 

  • Li F, Sun X, Zhang H, Li B, Gan F (2007) Pyromellitic dianhydride-modified β-cyclodextrin microspheres for Pb(II) and Cd(II) adsorption. J Appl Polym Sci 105:3418–3425. doi:10.1002/app.26376

    Article  CAS  Google Scholar 

  • Li Y, Wen Y, Wang L, He J, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Simultaneous visual detection and removal of lead(II) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes. J Mater Chem A 3:18180–18189. doi:10.1039/c5ta05030h

    Article  CAS  Google Scholar 

  • Liu J, Ma Y, Zhang Y, Shao G (2010) Novel negatively charged hybrids. 3. Removal of Pb2+ from aqueous solution using zwitterionic hybrid polymers as adsorbent. J Hazard Mater 173:438–444. doi:10.1016/j.jhazmat.2009.08.097

    Article  CAS  Google Scholar 

  • Liu J, Si J, Zhang Q, Zheng J, Han C, Shao G (2011a) Preparation of negatively charged hybrid adsorbents and their applications for Pb2+ removal. Ind Eng Chem Res 50:8645–8657. doi:10.1021/ie200023b

    Article  CAS  Google Scholar 

  • Liu B, Wang XY, Yang B, Sun RC (2011b) Rapid modification of montmorillonite with novel cationic Gemini surfactants and its adsorption for methyl orange. Mater Chem Phys 130:1220–1226. doi:10.1016/j.matchemphys.2011.08.064

    Article  CAS  Google Scholar 

  • Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Zhu H (2012) Adsorption of methylene blue from aqueous solution by graphene. Colloid Surface B 90:197–203. doi:10.1016/j.colsurfb.2011.10.019

    Article  CAS  Google Scholar 

  • Liu F, Jin Y, Liao H, Cai L, Tong M, Hou Y (2013) Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. J Mater Chem A 1:805–813. doi:10.1039/c2ta00099g

    Article  CAS  Google Scholar 

  • Liu N, Wang H, Weng CH, Hwang CC (2016) Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arab J Chem. doi:10.1016/j.arabjc.2016.04.010 (in press)

    Google Scholar 

  • Ma Z, Guan Y, Liu H (2005) Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J Polym Sci, Part A: Polym Chem 43:3433–3439. doi:10.1002/pola.20803

    Article  CAS  Google Scholar 

  • Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Hou S (2012) Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl Mater Interface 4:1186–1193. doi:10.1021/am201645g

    Article  CAS  Google Scholar 

  • Michelson LD, Gideon PG, Pace EG, Kutal LH (1975) Removal of soluble mercury from wastewater by complexing technique. US Department of Industry, Office of Water Research and Technology, Bull No. 74

  • Monier M, Ayad DM, Sarhan AA (2010) Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. J Hazard Mater 176:348–355. doi:10.1016/j.jhazmat.2009.11.034

    Article  CAS  Google Scholar 

  • Muz M, Krauss M, Kutsarova S, Schulze T, Brack W (2017) Mutagenicity in surface waters: synergistic effects of carboline alkaloids and aromatic amines. Environ Sci Technol 51:1830–1839. doi:10.1021/acs.est.6b05468

    Article  CAS  Google Scholar 

  • Nadeem R, Hanif MA, Shaheen F, Perveen S, Zafar MN, Iqbal T (2008) Physical and chemical modification of distillery sludge for Pb(II) biosorption. J Hazard Mater 150:335–342. doi:10.1016/j.jhazmat.2007.04.110

    Article  CAS  Google Scholar 

  • Pang BW, Jiang CH, Yeung M, Ouyang Y, Xi JY (2017) Removal of dissolved sulfides in aqueous solution by activated sludge: mechanism and characteristics. J Hazard Mater 324:732–738. doi:10.1016/j.jhazmat.2016.11.048

    Article  CAS  Google Scholar 

  • Peng S, Meng HC, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind Eng Chem Res 53:2106–2113. doi:10.1021/ie402855t

    Article  CAS  Google Scholar 

  • Plateroa E, Fernandeza ME, Bonellia PR, Al Cukierman (2017) Graphene oxide/alginate beads as adsorbents: influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance. J Colloid Interface Sci 491:1–12. doi:10.1016/j.jcis.2016.12.014

    Article  Google Scholar 

  • Putroa JN, Santosoa SP, Ismadji S, Jua YH (2017) Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–Bentonite nanocomposite: improvement on extended Langmuir isotherm model. Microporous Mesoporous Mater 246:166–177. doi:10.1016/j.micromeso.2017.03.032

    Article  Google Scholar 

  • Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458. doi:10.1002/bit.20136

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res Int 19:1224–1228. doi:10.1007/s11356-011-0670-6

    Article  CAS  Google Scholar 

  • Tanong K, Tran LH, Mercier G, Blais JF (2017) Recovery of Zn(II), Mn(II), Cd(II) and Ni(II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J Clean Prod 148:233–244. doi:10.1016/j.jclepro.2017.01.158

    Article  CAS  Google Scholar 

  • Weng CH, Pan YF (2007) Adsorption of a cationic dye (methylene blue) onto spent activated clay. J Hazard Mater 144:355–362. doi:10.1016/j.jhazmat.2006.09.097

    Article  CAS  Google Scholar 

  • Weng CH, Lin YT, Tzeng TW (2009) Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J Hazard Mater 170:417–424. doi:10.1016/j.jhazmat.2009.04.080

    Article  CAS  Google Scholar 

  • Weng CH, Lin YT, Hong DY, Sharma YC, Chen SC, Tripathib K (2014a) Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol Eng 67:127–133. doi:10.1016/j.ecoleng.2014.03.053

    Article  Google Scholar 

  • Weng CH, Lin YT, Liu N, Yang HY (2014b) Enhancement of the advanced Fenton process by ultrasound for decolorisation of real textile wastewater. Color Technol 130:133–139. doi:10.1111/cote.12069

    Article  CAS  Google Scholar 

  • Wilson K, Yang H, Seo CW, Marshall WE (2006) Select metal adsorption by activated carbon made from peanut shells. Bioresour Technol 97:2266–2270. doi:10.1016/j.biortech.2005.10.043

    Article  CAS  Google Scholar 

  • Wu SQ, Duan B, Zeng XP, Lu A, Xu XJ, Wang YF, Ye QF, Zhang L (2017) Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B Adv Artic. doi:10.1039/C7TB00101K

    Google Scholar 

  • Xiang B, Ling D, Lou H, Gu HB (2017) 3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead(II) removal from aqueous water. J Hazard Mater 325:178–180. doi:10.1016/j.jhazmat.2016.11.011

    Article  CAS  Google Scholar 

  • Xing Y, Li S (2013) Biosorption of methylene blue from aqueous solution by poly(amic acid)-modified chitosan. Environ Prog Sustain Energy 33:1180–1186. doi:10.1002/ep.11904

    Google Scholar 

  • Xing Y, Sun XM, Li BH (2009) Pyromellitic dianhydride-modified chitosan microspheres for enhancement of cationic dyes adsorption. Environ Eng Sci 26:551–558. doi:10.1089/ees.2007.0346

    Article  CAS  Google Scholar 

  • Yakout AA, El-Sokkary RH, Shreadah MA, AbdelHamid OG (2016) Removal of Cd(II) and Pb(II) from wastewater by using triethylenetetramine functionalized grafted cellulose acetate-manganese dioxide composite. Carbohydr Polym 148:406–414. doi:10.1016/j.carbpol.2016.04.038

    Article  CAS  Google Scholar 

  • Yang Y, Xie Y, Pang L, Li M, Song X, Wen J, Zhao H (2013) Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir 29:10727–10736. doi:10.1021/la401940z

    Article  CAS  Google Scholar 

  • Yang H, Sheikhi A, Van de Ven TGM (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32:11771–11779. doi:10.1021/acs.langmuir.6b03084

    Article  CAS  Google Scholar 

  • Yao J, Xu H, Wang J, Jiang M, Ouyang PK (2007) Removal of Cr(III), Ni(II) and Cu(II) by poly(γ-glutamic acid) from Bacillus subtilis NX-2. J Biomater Sci Polym E 2:193–204. doi:10.1163/156856207779116702

    Article  Google Scholar 

  • Yenera I, Orala EV, Dolak I, Ozdemirc S, Ziyadanogullari R (2017) A new method for preconcentration of Th(IV) and Ce(III) by thermophilic Anoxybacillus flavithermus immobilized on Amberlite XAD-16 resin as a novel biosorbent. Ecol Eng 103:43–49. doi:10.1016/j.ecoleng.2017.02.056

    Article  Google Scholar 

  • Yu JX, Tong M, Sun XM, Li BH (2007) Biomass grafted with polyamic acid for enhancement of cadmium(II) and lead(II) biosorption. React Funct Polym 67:564–572. doi:10.1016/j.reactfunctpolym.2007.03.010

    Article  CAS  Google Scholar 

  • Yu JX, Chi RA, Su XZ, He ZY, Qi YF, Zhang YF (2010) Desorption behavior of methylene blue on pyromellitic dianhydride modified biosorbent by a novel eluent: acid TiO2 hydrosol. J Hazard Mater 177:222–227. doi:10.1016/j.jhazmat.2009.12.021

    Article  CAS  Google Scholar 

  • Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013) Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl Surf Sci 268:163–170. doi:10.1016/j.apsusc.2012.12.047

    Article  CAS  Google Scholar 

  • Zhang T, Wang YJ, Kuang YW, Yang RL, Ma J, Zhao SL, Liao Y, Mao H (2017) Adsorptive removal of Cr3+ from aqueous solutions using chitosan microfibers immobilized with plant polyphenols as biosorbents with high capacity and selectivity. Appl Surf Sci 404:418–425. doi:10.1016/j.apsusc.2017.02.018

    Article  CAS  Google Scholar 

  • Zhao LY, Wang XK, Guo YG, Wu NZ, Xie YC (2003) Adsorption of methylene blue on the muscovite. Acta Phys Chim Sin 19:896–901. doi:10.3866/PKU.WHXB20031003

    CAS  Google Scholar 

  • Zuo X (2014) Preparation and evaluation of novel thiourea/chitosan composite beads for copper(II) removal in aqueous solutions. Ind Eng Chem Res 53:1249–1255. doi:10.1021/ie4036059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China (21476090, 21602163), Natural Science Foundation of Hubei Province, China (2016CFB261), and Research Foundation of Education Bureau of Hubei Province, China (Q20161607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Jie Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Liu, Y., Xue, Z. et al. Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb(II) and methylene blue from aqueous solution. Cellulose 24, 4793–4806 (2017). https://doi.org/10.1007/s10570-017-1463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1463-y

Keywords

Navigation