Skip to main content

Advertisement

Log in

Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibrils (CNF) from wood fibers are of increasing interest to industry because they are from renewable sources and are biodegradable. Owing to their high aspect ratio, they produce viscous suspensions and stiff gels that are strengthened by interfibrillar hydrogen bonds. In this study, the viscosity of aqueous CNF suspensions, at dilute concentrations (\(nL^{3}<1\)), was measured at various pH values by addition of HCl, and at various ionic strengths by addition of NaCl and \(\hbox {CaCl}_{2}\). The results show that the primary electroviscous effect significantly increases the intrinsic viscosity. The intrinsic viscosity under conditions where the surface charge of nanofibrils is fully screened is in good agreement with the predictions of classical theory for dispersions of rodlike particles at low shear rates. Increasing the ionic strength up to \(\kappa d\approx 1\) decreases the intrinsic viscosity; at \(\kappa d>1\), the intrinsic viscosity increases because of fibril aggregation and increase of the effective volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson LS (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  Google Scholar 

  • Brenner HJ (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int J Muliphase Flow 1:195–341

    Article  Google Scholar 

  • Chen SB, Koch DL (1996a) Electrophoresis and sedimentation of charged fibers. J Colloid Interface Sci 180:466–477

    Article  CAS  Google Scholar 

  • Chen SB, Koch DL (1996b) Rheology of dilute suspensions of charged fibers. Phys Fluids 8:2792–2807. doi:10.1063/1.869,085

    Article  CAS  Google Scholar 

  • Dhont JKG, Briels WJ (2003) Viscoelasticity of suspensions of long, rigid rods. Colloids Surf A 213:131–156

    Article  CAS  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekul Dimensionen. Ann Phys 34:591–592

    Article  CAS  Google Scholar 

  • Figueiredo JA, Ismael MI, Anjo CMS, Duarte AP (2010) Cellulose and derivatives from wood and fibers as renewable sources of raw-materials. Top Curr Chem 294:117–128

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund L, Isaksson P, Lindstrom T, Nishino N (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Hermans P, Hermans J, Vermaas DJ (1945) Density of cellulose fibers. II. Density and refractivity of model filaments. Polym Sci 1:156–161

    Article  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hinch E, Leal L (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52:683–712

    Article  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen W, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi:10.1007/s10,924-010-0248-2

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) Tempo-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee SH, Endo T (2013) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polymer J 1:1–4

    Google Scholar 

  • Laivins G, Scallan A (1997) The exchange and removal of the metal cations in pulp. Trans 11th Fund Research Symp. Fundamentals of papermaking materials, Cambridge 2:837–858

  • Lopez-Rubio A, Lagaron J, Ankerfors M, Lindstrom T, Nordqvist D, Mattozzi A (2007) Enhanced film forming and film properties of amylopectin using microfibrillated cellulose. Carbohydr Poly 64:718–727

    Article  Google Scholar 

  • Mansfield M, Douglas J (2008) Transport properties of rodlike particles. Macromolecules 41:5422–5432

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, New York

    Google Scholar 

  • Mills P (1985) Non-Newtonian behaviour of flocculated suspensions. J Phys Lett 46:301–309

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Okagawa A, Mason SG (1977) Kinetics of flowing dispersions. X. Oscillations in optical properties of streaming suspensions of spheroids. Can J Chem 55:4243–4256

    Article  Google Scholar 

  • Onsager L (1949) The effect of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Sterberg MO, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  Google Scholar 

  • Petrie C (1999) The rheology of fiber suspensions. J Non Newton Fluid Mech 87:369–402

    Article  CAS  Google Scholar 

  • Sherwood JD (1981) The primary electroviscous effect in a suspension of rods. J Fluid Mech 111:347–366

    Article  CAS  Google Scholar 

  • Sherwood JD (1982) Electrophoresis of rods. J Chem Soc Faraday Trans 2(78):1091–1100

    Article  Google Scholar 

  • Simha R (1940) The influence of Brownian movement on the viscosity of solutions. Phys Chem 44:25–34

    Article  CAS  Google Scholar 

  • Snabre P, Mills P (1996) Rheology of weakly flocculated suspensions of rigid particles. J Phys III France 6:1811–1834

    Article  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Towers M, Scallan AM (1996) Predicting the ion-exchange of kraft pulps using Donnan theory. J Pulp Paper Sci 9:332–337

    Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Ubbelohde L (1937) Arrangement for testing the viscosity of liquid materials. US Pat 2(091):896

    Google Scholar 

  • van de Ven TGM (1989) Colloidal hydrodynamics. Academic Press Limited, London

    Google Scholar 

Download references

Acknowledgments

Financial support from the NSERC Innovative Green Wood Fibre Products Network is gratefully acknowledged. We thank Forest Product Laboratory (FPL) (Madison, WI, USA) for providing CNF, Louis Godbout for valuable discussions, and David Liu for assistance with TEM. Prof. Reghan J. Hill (Chemical Engineering, McGill University) is acknowledged for his contribution to the interpretation of the results and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. M. van de Ven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jowkarderis, L., van de Ven, T.G.M. Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 21, 2511–2517 (2014). https://doi.org/10.1007/s10570-014-0292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0292-5

Keywords

Navigation