Skip to main content
Log in

Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A simple method for preparing redispersible nanofibers from sugar beet residue and their use as a well-dispersed reinforcement for a polyvinyl alcohol (PVA) matrix is reported. It is known that the redispersion of dried cellulose nanofibers is difficult because of the formation of strong hydrogen bonds between the nanofibers. The results show that the properties of the initial sugar beet nanofiber suspension can be recovered without the use of chemical modification or additives with higher pectin and hemicellulose content. Undried and redispersed nanofibers with and without pectin were used as nanocomposite reinforcement with PVA. The redispersed nanofibers were as good reinforcements as the undried nanofibers. The tensile strength and elastic modulus of the nanocomposites with the redispersed sugar beet nanofibers were as good as those of the nanocomposites with undried nanofibers. Interestingly, the nanofiber dispersion in the PVA matrix was better when sugar beet nanofibers containing pectin and hemicellulose were used as reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983. doi:10.1016/j.carbpol.2010.12.052

    Article  CAS  Google Scholar 

  • Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl. Cellulose 21:4349–4358. doi:10.1007/s10570-014-0452-7

    Article  CAS  Google Scholar 

  • Cao Y, Zavattieri P, Youngblood J et al (2016) The relationship between cellulose nanocrystal dispersion and strength. Constr Build Mater 119:71–79. doi:10.1016/j.conbuildmat.2016.03.077

    Article  Google Scholar 

  • Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188. doi:10.1007/BF02228800

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR, et al (1999) United States Patent: 5964983—Microfibrillated cellulose and method for preparing a microfibrillated cellulose

  • Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. doi:10.1007/s10570-009-9372-3

    Article  CAS  Google Scholar 

  • Filippov MP (1992) Practical infrared spectroscopy of pectic substances. Food Hydrocoll 6:115–142

    Article  CAS  Google Scholar 

  • Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A Appl Sci Manuf 83:89–97. doi:10.1016/j.compositesa.2015.05.024

    Article  CAS  Google Scholar 

  • Hiasa S, Kumagai A, Endo T, Edashige Y (2016) Prevention of aggregation of pectin-containing cellulose nanofibers prepared from mandarin peel. J Fiber Sci Technol 72:17–26. doi:10.2115/fiberst.2016-0006

    Article  Google Scholar 

  • Hietala M, Oksman K (2014) Technologies for separation of cellulose nanofibers. In: Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (eds) Handbook of Green Materials: Processing Technologies, Properties and Applications (in 4 volumes), Vol 1. Bionanomaterials: separation processes, chacacterization and properties.World Scientific Publishing Co., Pte. Ltd., Singapore. ISBN 978-981-4566-48-3

  • ISO 1762:2001 (2001) Paper, board and pulps—determination of residue (ash) on ignition at 525 degrees C

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238. doi:10.1016/j.indcrop.2012.03.018

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. doi:10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Papperstidning 87:48–53

    Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. doi:10.1016/j.compscitech.2014.08.032

    Article  Google Scholar 

  • Li M, Wang L, Li D et al (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143. doi:10.1016/j.carbpol.2013.11.021

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö J et al (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749. doi:10.1007/s10570-013-9865-y

    Article  CAS  Google Scholar 

  • Lindstroem T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Sven Papperstidning R146–R151

  • Lowys M-P, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32. doi:10.1016/S0268-005X(00)00046-1

    Article  CAS  Google Scholar 

  • Mata YN, Blázquez ML, Ballester A et al (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150:289–301. doi:10.1016/j.cej.2009.01.001

    Article  CAS  Google Scholar 

  • Michel F, Thibault J-F, Barry J-L, de Baynast R (1988) Preparation and characterisation of dietary fibre from sugar beet pulp. J Sci Food Agric 42:77–85. doi:10.1002/jsfa.2740420109

    Article  CAS  Google Scholar 

  • Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125. doi:10.1021/bm301378n

    Article  CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys Mater Sci Process 78:547–552. doi:10.1007/s00339-003-2453-5

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784. doi:10.1016/j.compscitech.2006.03.002

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing, properties and potential applications. Plast Rubber Compos 38:396–404

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. doi:10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  • TAPPI T 280 pm-99 (1999) Acetone extractives of wood and pulp

  • TAPPI T222 om-02 (2002a) Acid-insoluble lignin in wood and pulp

  • TAPPI T212 om-02 (2002b) One percent sodium hydroxide solubility of wood and pulp

  • Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Phatak L, Chang KC, Brown G (1988) Isolation and characterization of pectin in sugar-beet pulp. J Food Sci 53:830–833. doi:10.1111/j.1365-2621.1988.tb08964.x

    Article  CAS  Google Scholar 

  • Siqueira G, Oksman K, Tadokoro SK, Mathew AP (2016) Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Compos Sci Technol 123:49–56. doi:10.1016/j.compscitech.2015.12.001

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Sjostrom (1989) The origin of charge on cellulosic fibers. Nord Pulp Pap Res J 4:090–093. doi:10.3183/NPPRJ-1989-04-02-p090-093

    Article  Google Scholar 

  • Sun RC, Hughes S (1999) Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydr Polym 38:273–281. doi:10.1016/S0144-8617(98)00102-7

    Article  CAS  Google Scholar 

  • Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339. doi:10.1016/j.polymdegradstab.2004.02.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Sucros Oy (Säkylä, Finland) for providing the sugar beet residue and Stora Enso (Oulu, Finland) for providing the sulfate pulp used in the study. M. Sc. Mohammad Farooq is acknowledged for the preparation and testing of the cellulose nanopapers, Dr. Juho Sirviö for his help with the FT-IR analysis and M. Sc. Shiyu Geng for performing the TG analysis. The Finnish Funding Agency for Innovation (TEKES) is kindly acknowledged for financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiju Hietala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hietala, M., Sain, S. & Oksman, K. Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites. Cellulose 24, 2177–2189 (2017). https://doi.org/10.1007/s10570-017-1245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1245-6

Keywords

Navigation