Skip to main content

Advertisement

Log in

Investigation of cross-linked PVA/starch biocomposites reinforced by cellulose nanofibrils isolated from aspen wood sawdust

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, a bio-based composite prepared from cross-linked polyvinyl alcohol/starch/cellulose nanofibril (CNF) was developed for film packaging applications. For this purpose, CNF, as reinforcing phase, was initially isolated from aspen wood sawdust (AWS) using chemo-mechanical treatments, and during these treatments, hydrolysis conditions were optimized by experimental design. Morphological and chemical characterizations of AWS fibers were studied by transmission electron microscopy, scanning electron microscopy, Kappa number, and attenuated total reflectance-Fourier transform infrared spectroscopy, as well as National Renewable Energy Laboratory and ASTM procedures. Morphological images showed that the diameter of the AWS fibers was dramatically decreased during the chemo-mechanical treatments, proving the successful isolation of CNF. Moreover, chemical composition results indicated the successful isolation of cellulose, and Kappa number analysis demonstrated a dramatic reduction in lignin content. Mechanical, morphological, biodegradability, and barrier properties of biocomposites were also investigated to find out the influence of CNF on the prepared biocomposite properties. The mechanical results obtained from tensile analysis revealed that Young’s modulus and ultimate tensile strength of biocomposite films were enhanced with increasing CNF concentration, while a significant decrease was observed in elongation at break at the same concentration of CNF. Furthermore, with adding CNF, barrier properties and resistance to biodegradability were increased in films, whereas film transparency gradually declined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compost 24:1259–1268

    Article  CAS  Google Scholar 

  • Chai XS, Zhu JY (1999) Rapid and direct pulp Kappa number determination using spectrophotometry. J Pulp Pap Sci 25:387–392

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Chui-Shin J-SLP (2011) Hydroxypropylation of Saba Banana Starch. In: Proceedings of 2011 3rd international conference on chemical, biological and environmental engineering (ICBEE 2011)

  • Colom X, Carrillo F, Nogues F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80:543–549

    Article  CAS  Google Scholar 

  • Das K, Ray D, Bandyopadhyay N, Sahoo S, Mohanty AK, Misra M (2011) Physico-mechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films. Compos Part B Eng 42:376–381

    Article  Google Scholar 

  • Dean KM, Do MD, Petinakis E, Yu L (2008) Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Compos Sci Technol 68:1453–1462

    Article  CAS  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform-materials analysis. Intech, Rijeka

    Google Scholar 

  • Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235

    Article  CAS  Google Scholar 

  • Gladyshko Y (2011) Extraction of hemicelluloses by acid catalyzed hydrolysis. Dissertation, Saimaa University of Applied Sciences

  • Habibi Y, Lucia LA (eds) (2012) Nanocelluloses: emerging building blocks for renewable materials. In: Polysaccharide building blocks. Wiley, New Jersey

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  Google Scholar 

  • Heidarian P, Behzad T, Karimi K (2016) Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification. Wood Sci Technol 50:1071–1088

    Article  CAS  Google Scholar 

  • Heidarian P, Behzad T, Karimi K, Sain M (2017) Properties investigation of recycled polylactic acid reinforced by cellulose nanofibrils isolated from bagasse. Polym Compos. doi:10.1002/pc.24404

    Google Scholar 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kamphunthong W, Hornsby P, Sirisinha K (2012) Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. J Appl Polym Sci 125:1642–1651

    Article  CAS  Google Scholar 

  • Karande V, Bharimalla A, Hadge G, Mhaske S, Vigneshwaran N (2011) Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers Polym 12:399–404

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  • Kodlady N, Patgiri BJ (2012) Utilization of borax in the pharmaceutico-therapeutics of Ayurveda in India. Indian J Hist Sci 47:191–209

    Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Lawton JW, Fanta GF (1994) Glycerol-plasticized films prepared from starch–poly(vinyl alcohol) mixtures: effect of poly(ethylene-co-acrylic acid). Carbohydr Polym 23:275–280

    Article  CAS  Google Scholar 

  • Lee S-T, Park CB, Ramesh NS (2007) Polymeric foams: science and technology. Taylor & Francis, New York

    Google Scholar 

  • Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5:1101–1107

    Article  CAS  Google Scholar 

  • Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  • Maiti S, Ray D, Mitra D (2012) Role of crosslinker on the biodegradation behavior of starch/polyvinylalcohol blend films. J Polym Environ 20:749–759

    Article  CAS  Google Scholar 

  • Mao L, Imam S, Gordon S, Cinelli P, Chiellini E (2000) Extruded cornstarch–glycerol–polyvinyl alcohol blends: mechanical properties, morphology, and biodegradability. J Polym Environ 8:205–211

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • Nasri-Nasrabadi B, Behzad T, Bagheri R (2014) Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomechanical method. J Appl Polym Sci. doi:10.1002/app.40063

  • Noushirvani N, Ghanbarzadeh B, Entezami A (2012) Effect of cellulose nanocrystal and polyvinyl alcohol on the physical properties of starch based bionanocomposite films. Iran J Nutr Sci Food Technol 7:63–74

    Google Scholar 

  • Ochiai H, Fujino Y, Tadokoro Y, Murakami I (1980) Binding of borax to poly(vinyl alcohol) in aqueous solution. Polymer 21:485–487

    Article  CAS  Google Scholar 

  • Panaitescu DM, Frone AN, Ghiurea M, Chiulan I (2015) Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Ind Crop Prod 70:170–177

    Article  CAS  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Renard C, Rohou Y, Hubert C, Della Valle G, Thibault J-F, Savina J-P (1997) Bleaching of apple pomace by hydrogen peroxide in alkaline conditions: optimisation and characterisation of the products. LWT Food Sci Technol 30:398–405

    Article  CAS  Google Scholar 

  • Segal LG, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL). http://www.nrel.gov/biomass/analytical_procedures.html. Accessed 17 July 2005

  • Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym 111:442–448

    Article  CAS  Google Scholar 

  • Sreedhar B, Sairam M, Chattopadhyay D, Rathnam P, Rao D (2005) Thermal, mechanical, and surface characterization of starch–poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci 96:1313–1322

    Article  CAS  Google Scholar 

  • Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72:521–526

    Article  CAS  Google Scholar 

  • Thakore IM, Desai S, Devi S (2001) Compatibility and biodegradability of PMMA–starch cinnamate blends in various solvents. J Appl polym Sci 79:488–496

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  • Westhoff RP, Kwolek WF, Otey FH (1979) Starch–polyvinyl alcohol films—effect of various plasticizers. Starch Stärke 31:163–165

    Article  CAS  Google Scholar 

  • Widiarto S (2012) Effect of borax on mechanical properties and biodegradability of sago starch—poly(vinylalcohol) blend films. J Sains MIPA Univ Lampung 3(11):151–157

    Google Scholar 

  • Xiong H, Tang S, Tang H, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yang Y, Liu C, Chang PR, Chen Y, Anderson DP, Stumborg M (2010) Properties and structural characterization of oxidized starch/PVA/α-zirconium phosphate composites. J Appl Polym Sci 115:1089–1097

    Article  CAS  Google Scholar 

  • Yu J, Chen S, Gao J, Zheng H, Zhang J, Lin T (1998) A study on the properties of starch/glycerine blend. Starch Stärke 50:246–250

    Article  CAS  Google Scholar 

  • Zhou J, Ma Y, Ren L, Tong J, Liu Z, Xie L (2009) Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr Polym 76:632–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nano Novin Polymer Co. for assisting in CNF production using an ultrafine grinder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Heidarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarian, P., Behzad, T. & Sadeghi, M. Investigation of cross-linked PVA/starch biocomposites reinforced by cellulose nanofibrils isolated from aspen wood sawdust. Cellulose 24, 3323–3339 (2017). https://doi.org/10.1007/s10570-017-1336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1336-4

Keywords

Navigation