Skip to main content
Log in

Cellulose nanosheets induced by mechanical impacts under hydrophobic environment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The nanoscale structural changes of crystalline cellulose by mechanical milling was studied by high-resolution microscopy (AFM, SEM, TEM). We examined influence of environment [dry, water, silicone oil (PDMS)] on cellulose milling, finding their characteristic effects on microscopic morphology of the products. Dry milling of cellulose gave aggregated globular particles with fast decrystallization. Milling with water or PDMS caused partial dispersion of nanofibers. Milling with PDMS formed micro-platelets <1 µm thick with slight decrystallization. Remarkably, nanoscale particles isolated from PDMS-milled cellulose by sonication in ethanol contained cellulose nanosheets, typically 0.1–10 µm wide and 4.2 nm thick, apparently formed by monolayer association of elementary fibrils. TEM and electron diffraction revealed crystalline nature of nanosheets, with specific orientation of (110) plane or (200) plane perpendicular to the sheet plane. A possible mechanism of the nanosheets formation is proposed, in which the elementary fibrils are aligned parallel by mechanical impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441

    Article  CAS  Google Scholar 

  • Alqus R, Eichhorn SJ, Bryce RA (2015) Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 16:1771–1783

    Article  CAS  Google Scholar 

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496

    Article  CAS  Google Scholar 

  • Biermann O, Hädicke E, Koltzenburg S, Müller-Plathe F (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40:3822–3825

    Article  CAS  Google Scholar 

  • Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose I-beta. Carbohydr Polym 125:146–152

    Article  CAS  Google Scholar 

  • Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Fengel D (1971) Ideas on the ultrastructural organization of the cell wall components. J Polym Sci Polym Symp 36:383–392

    Article  Google Scholar 

  • Filonova L, Kallas AM, Greffe L, Johansson G, Teeri TT, Daniel G (2007) Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan. Biomacromolecules 8:91–97

    Article  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gilkes NR, Kilburn DG, Miller RC, Warren RAJ, Sugiyama J, Chanzy H, Henrissat B (1993) Visualization of the adsorption of a bacterial endo-β-1, 4-glucanase and its isolated cellulose-binding domain to crystalline cellulose. Int J Biol Macromol 15:347–351

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2014) Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ. Cellulose 21:879–884

    Article  CAS  Google Scholar 

  • Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular Imaging of Halocynthia papillosaCellulose. J Struct Biol 124:42–50

    Article  Google Scholar 

  • Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186–36190

    Article  CAS  Google Scholar 

  • Kimura S, Itoh T (2004) Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709

    Article  CAS  Google Scholar 

  • Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348

    Article  CAS  Google Scholar 

  • Segal LC, Creely J, Martin AEJ, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Staudinger H, Döhle W (1943) Über Inklusionscellulosen. 310. Mitteilung über makromolekulare Verbindungen. J Prakt Chem 161:219–240

    Article  Google Scholar 

  • Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478

    Article  CAS  Google Scholar 

  • Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13:1183–1187

    Article  CAS  Google Scholar 

  • Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22:1729–1741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 51373191, 51172247, 51472253) and the Chinese Academy of Sciences Visiting Professorships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wu or Yong Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Kuga, S., Jiang, S. et al. Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23, 2809–2818 (2016). https://doi.org/10.1007/s10570-016-1033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1033-8

Keywords

Navigation