Skip to main content
Log in

Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Previous studies of calculated diffraction patterns for cellulose crystallites suggest that distortions that arise once models have been subjected to molecular dynamics (MD) simulation are the result of both microfibril twisting and changes in unit cell dimensions induced by the empirical force field; to date, it has not been possible to separate the individual contributions of these effects. To provide a better understanding of how twisting manifests in diffraction data, the present study demonstrates a method for generating twisted and linear cellulose structures that can be compared without the bias of dimensional changes, allowing assessment of the impact of twisting alone. Analysis of unit cell dimensions, microfibril volume, hydrogen bond patterns, glycosidic torsion angles, and hydroxymethyl group orientations confirmed that the twisted and linear structures collected with this method were internally consistent, and theoretical powder diffraction patterns for the two were shown to be effectively indistinguishable. These results indicate that differences between calculated patterns for the crystal coordinates and twisted structures from MD simulation can result entirely from changes in unit cell dimensions, and not from microfibril twisting. Although powder diffraction patterns for models in the 81-chain size regime were shown to be unaffected by twisting, suggesting that a modest degree of twist is not inconsistent with available crystallographic data, it may be that other diffraction techniques are capable of detecting this structural difference. Until such time as definitive experimental evidence comes to light, the results of this study suggest that both twisted and linear microfibrils may represent an appropriate model for cellulose Iβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balaeff A (2013) Mol_Volume. http://wwwksuiucedu/Development/MDTools/molvolume/

  • Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Bu LT, Beckham GT, Crowley MF, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR (2009) The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 113(31):10994–11002

    Article  CAS  Google Scholar 

  • Case DA, Macke TJ, Svrcek-Seiler WA, Brown RA, Kolossváry I, Bomble YJ, Anandakrishnan R, Zhang W, Hou T, Schafmeister C, Ross WS, Wang J, Wolf RM, Cheatham TE III, Tsui V, Pitera JW, Gohlke H, Tanner S, Absgarten E, Roe DR, Frybarger P, Wang J, Cai Q, Ye X, Hsieh MJ, Tan C, Luo R, Walker RC, Crowley MF, Brozell S, Giese T, Götz AW, Lee TS, Williamson M, Luchko T, Gusarov S, Kovalenko A, Cerutti DS, Swails J, McGee TD Jr, Miller B III, Peters M, Ayers K, Wollacott A, Williams DE, Roberts BP, Merz KM Jr, Betz R (2012) AmberTools 12. University of California, San Francisco

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  • Glass DC, Moritsugu K, Cheng XL, Smith JC (2012) REACH coarse-grained simulation of a cellulose fiber. Biomacromolecules 13(9):2634–2644

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Horii F (1998) Helical sense of ribbon assemblies and splayed microfibrils of bacterial cellulose. Senri Gakkai shi 54(10):506–510

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29(4):622–655

    Article  CAS  Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I beta. Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115(10):2155–2166

    Article  CAS  Google Scholar 

  • Matthews JF, Beckham GT, Bergenstrahle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose I beta simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336

    Article  CAS  Google Scholar 

  • Paavilainen S, Rog T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755

    Article  CAS  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comp Chem 26:1701–1718

    Google Scholar 

  • Wehle M, Vilotijevic I, Lipowsky R, Seeberger PH, Varon Silva D, Santer M (2012) Mechanical compressibility of the glycosylphosphatidylinositol(GPI) anchor backbone by independent glycosidic linkages. J Am Chem Soc 134(46):18964–18972

    Article  CAS  Google Scholar 

  • Wojdyr M (2012) Debyer. http://wwwunipresswawpl/debyer, http://codegooglecom/p/debyer/wiki/debyer

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose I beta crystal models by molecular dynamics. Carbohydr Res 341(15):2521–2530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Cotton, Inc. for support of this work, as well as the National Institutes for Health (GM094919 (EUREKA)) and the Science Foundation of Ireland (08/IN.1/B2070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Woods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadden, J.A., French, A.D. & Woods, R.J. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ. Cellulose 21, 879–884 (2014). https://doi.org/10.1007/s10570-013-0051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0051-z

Keywords

Navigation