Skip to main content
Log in

Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, a cellulase pretreatment was studied prior to the acid hydrolysis to decrease the total acid usage during the cellulose nano-crystals (CNC) preparation from a bleached softwood kraft pulp. Cellulase pretreatment facilitates the subsequent acid hydrolysis to produce CNC with similar quality to that of the control, but at a lower sulfuric acid concentration. The underline mechanism is that cellulase pretreatment led to the formation of more carbonyl groups which can be oxidized into carboxyl groups in the subsequent acid hydrolysis, furthermore, more hydroxyl groups are exposed, thus esterification into sulfonic groups can be enhanced. The results showed that with a cellulase dosage of 4.8 u/g (based on dry pulp) in the pretreatment stage, the sulfuric acid concentration can be decreased from 64 to 40 wt% without compromising the quality of resulting CNC particles. Other results from charge properties, Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) analyses also supported the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794

    Article  CAS  Google Scholar 

  • Antczak T (2012) Nanotechnology-methods of manufacturing cellulose nanofibres. Fibres Text East Eur 20(2):91

    Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf, A 142(1):75–82

    Article  CAS  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848

    Article  CAS  Google Scholar 

  • Barichievich EM, Calza RE (1990) Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol 56(1):43–48

    CAS  Google Scholar 

  • Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42(3):502–507

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Beltramino F, Roncero MB, Vidal T, Torres AL, Valls C (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Bioresour Technol 192:574–581

    Article  CAS  Google Scholar 

  • Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22(3):1753–1762

    Article  CAS  Google Scholar 

  • de Campos A, Correa AC, Cannella D, de M Teixeira E, Marconcini JM, Dufresne A, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20(3):1491–1500

    Article  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87(4):2488–2495

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814

    Article  CAS  Google Scholar 

  • Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, José C, Martínez ÁT (2012) Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 119:114–122

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402

    CAS  Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I β crystalline domains. Carbohydr Polym 61(2):191–197

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Jiang Z, Liu Y, Sun X, Tian F, Sun F, Liang C, Li C (2003) Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir 19(3):731–736

    Article  CAS  Google Scholar 

  • Kurašin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286(1):169–177

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Liu X, Fatehi P, Ni Y (2011) Adsorption of lignocelluloses dissolved in prehydrolysis liquor of kraft-based dissolving pulp process on oxidized activated carbons. Ind Eng Chem Res 50(20):11706–11711

    Article  CAS  Google Scholar 

  • Lloyd JA, Horne CW (1993) The determination of fibre charge and acidic groups of radiata pine pulps. Nordic Pulp Pap Res J (Sweden)

  • Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573

    Article  CAS  Google Scholar 

  • Menon V, Prakash G, Prabhune A, Rao M (2010) Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour Technol 101(14):5366–5373

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  Google Scholar 

  • Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511

    Article  CAS  Google Scholar 

  • Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512

    Article  CAS  Google Scholar 

  • Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12

    Article  CAS  Google Scholar 

  • Rahkamo L, Vehviläinen L, Viikari L, Nousiainen P, Buchert J (1997) In: Eriksson K-EL, Cavaco-Paulo A (ed) Enzyme applications in fiber processing. American Chemical Society, Washington, pp 318–326

  • Rånby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3(5):969–975

    Article  Google Scholar 

  • Shen F, Kumar L, Hu J, Saddler JN (2011) Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates. Bioresour Technol 102(19):8945–8951

    Article  CAS  Google Scholar 

  • Shimizu M, Fukuzumi H, Saito T, Isogai A (2013) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Int J Biol Macromol 59:99–104

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010b) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158

    Article  CAS  Google Scholar 

  • Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta (BBA)-Gen Subj 1157(1):107-113

  • Sun B, Hou Q, Liu Z, He Z, Ni Y (2014) Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose 21(4):2879–2887

    Article  CAS  Google Scholar 

  • Sun X, Wu Q, Ren S, Lei T (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2):1123–1133

    Article  CAS  Google Scholar 

  • Virtanen T, Penttilä PA, Maloney TC, Grönqvist S, Kamppuri T, Vehviläinen M, Maunu SL (2015) Impact of mechanical and enzymatic pretreatments on softwood pulp fiber wall structure studied with NMR spectroscopy and X-ray scattering. Cellulose 22(3):1565–1576

    Article  CAS  Google Scholar 

  • Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-β-d-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microb Technol 23(6):350–359

    Article  CAS  Google Scholar 

  • Vršanská M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27

    Article  Google Scholar 

  • Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047

    Article  CAS  Google Scholar 

  • Wang Q, Jahan MS, Liu S, Miao Q, Ni Y (2014a) Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization. Bioresour Technol 164:380–385

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu J (2014b) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J (2015) Modeling laccase-induced lignin removal in prehydrolysis liquor from kraft-based dissolving pulp production. Bioresour Technol 175:638–641

    Article  CAS  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89(1):163–170

    Article  CAS  Google Scholar 

  • Zhang Y, Lu XB, Gao C, Lv WJ, Yao JM (2012) Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. J Fiber Bioeng Inform 5(3):263–271

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the Tianjin Municipal Science and Technology Commission (Grant No. 12ZCZDGX01100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangbing Wen or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Wen, Y., Cheng, D. et al. Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23, 2409–2420 (2016). https://doi.org/10.1007/s10570-016-0964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0964-4

Keywords

Navigation