Skip to main content
Log in

Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In response to the shortage of petroleum resources and the growing need for sustainable development, cellulose-based amphiphilic copolymers have emerged as a new generation of value-added functional nanostructures from biomass resources. In this article, 17 amphiphilic hydroxyethyl cellulose-based graft copolymers with different side chains, including poly(lactide), poly(ε-caprolactone) and poly(p-dioxanone), were synthesized via homogeneous ring opening polymerization in ionic liquid 1-butyl-3-methylimidazolium chloride and characterized by FT-IR, 1H NMR, thermogravimetric analysis and gel permeation chromatography. The resultant copolymers can self-assemble into micelles with a low critical micelle concentration that varies in the range of 0.03–0.24 mg/ml. TEM observations revealed the obtained micelles had a spherical and well-distributed morphology, and DLS analysis showed the nanoscaled sizes were between 40 and 150 nm. These HEC-based micelles can be used as nano-sized vesicles and have great latent forces in drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang C, Wei H, Quan CY, Li YY, Liu J, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2008) Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci Polym Chem 46:3048–3057

    Article  CAS  Google Scholar 

  • Chen C-H, Hsieh M-F, Ho Y-N, Huang C-M, Lee J-S, Yang C-Y, Chang Y (2011a) Enhancement of catechin skin permeation via a newly fabricated mPEG-PCL-graft-2-hydroxycellulose membrane. J Membr Sci 371:134–140

    Article  CAS  Google Scholar 

  • Chen CH, Cuong NV, Chen YT, So RC, Liau I, Hsieh MF (2011b) Overcoming multidrug resistance of breast cancer cells by the micellar doxorubicin nanoparticles of mPEG-PCL-graft-cellulose. J Nanosci Nanotechnol 11:53–60

    Article  Google Scholar 

  • Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(beta-malic acid) derivatives. Prog Polym Sci 31:723–747

    Article  CAS  Google Scholar 

  • Gong P, Yang Y, Yi H, Fang S, Zhang P, Sheng Z, Gao G, Gao D, Cai L (2014) Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging. Nanoscale 6:5416–5424

    Article  CAS  Google Scholar 

  • Guo YZ, Wang XH, Shu XC, Shen ZG, Sun RC (2012) Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J Agric Food Chem 60:3900–3908

    Article  CAS  Google Scholar 

  • Guo YZ, Liu Q, Chen H, Wang XH, Shen ZG, Shu XC, Sun RC (2013a) Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose 20:873–884

    Article  CAS  Google Scholar 

  • Guo YZ, Wang XZ, Shen ZG, Shu XC, Sun RC (2013b) Preparation of cellulose-graft-poly(ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym 92:77–83

    Article  CAS  Google Scholar 

  • Hao Y, Peng J, Li J, Zhai M, Wei G (2009) An ionic liquid as reaction media for radiation-induced grafting of thermosensitive poly (N-isopropylacrylamide) onto microcrystalline cellulose. Carbohydr Polym 77:779–784

    Article  CAS  Google Scholar 

  • Hassani LN, Hendra F, Bouchemal K (2012) Auto-associative amphiphilic polysaccharides as drug delivery systems. Drug Discov Today 17:608–614

    Article  CAS  Google Scholar 

  • Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R (1999) Polylactide (PLA)—a new way of production. Polym Eng Sci 39:1311–1319

    Article  CAS  Google Scholar 

  • Jiang C, Wang X, Sun P, Yang C (2011) Synthesis and solution behavior of poly(ε-caprolactone) grafted hydroxyethyl cellulose copolymers. Int J Biol Macromol 48:210–214

    Article  CAS  Google Scholar 

  • Jones MC, Leroux JC (2010) Reverse micelles from amphiphilic branched polymers. Soft Matter 6:5850–5859

    Article  CAS  Google Scholar 

  • Kang H, Liu R, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62:338–344

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3:679–684

    Article  CAS  Google Scholar 

  • Li Y, Liu R, Liu W, Kang H, Wu M, Huang Y (2008) Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-P(PEGMA) amphiphilic copolymers. J Polym Sci Polym Chem 46:6907–6915

    Article  CAS  Google Scholar 

  • Lin C, Zhan H, Liu M, Habibi Y, Fu S, Lucia LA (2013) RAFT synthesis of cellulose-g-polymethylmethacrylate copolymer in an ionic liquid. J Appl Polym Sci 127:4840–4849

    Article  CAS  Google Scholar 

  • Liu Y, Cao X, Luo M, Le Z, Xu W (2009) Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J Colloid Interface Sci 329:244–252

    Article  CAS  Google Scholar 

  • Liu XY, Chen J, Sun P, Liu ZW, Liu ZT (2010) Grafting modification of ramie fibers with poly(2,2,2-trifluoroethyl methacrylate) via reversible addition-fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. React Funct Polym 70:972–979

    Article  CAS  Google Scholar 

  • Lu H, Su F, Mei Q, Zhou X, Tian Y, Tian W, Johnson RH, Meldrum DR (2012) A series of poly N-(2-hydroxypropyl)methacrylamide copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J Polym Sci Polym Chem 50:890–899

    Article  CAS  Google Scholar 

  • Miller T, Breyer S, van Colen G, Mier W, Haberkorn U, Geissler S, Voss S, Weigandt M, Goepferich A (2013) Premature drug release of polymeric micelles and its effects on tumor targeting. Int J Pharm 445:117–124

    Article  CAS  Google Scholar 

  • Moghaddam PN, Avval ME, Fareghi AR (2014) Modification of cellulose by graft polymerization for use in drug delivery systems. Colloid Polym Sci 292:77–84

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  • Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230

    Article  CAS  Google Scholar 

  • Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  • Wang XH, Guo YZ, Li D, Chen H, Sun RC (2012a) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48:5569–5571

    Article  CAS  Google Scholar 

  • Wang XL, Zhai YL, Tang DL, Liu GY, Wang YZ (2012b) Self-assembly, drug-delivery behavior, and cytotoxicity evaluation of amphiphilic chitosan-graft-poly (1,4-dioxan-2-one) copolymers. J Polym Res 19:1221–1227

    Google Scholar 

  • Wang C, Yan D, Li Q, Sun W, Xing J (2014a) Ionic liquid pretreatment to increase succinic acid production from lignocellulosic biomass. Bioresour Technol 172:283–289

    Article  CAS  Google Scholar 

  • Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J (2014b) Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 35:7654–7665

    Article  CAS  Google Scholar 

  • Weerachanchai P, Kwak SK, Lee J-M (2014) Effects of solubility properties of solvents and biomass on biomass pretreatment. Bioresour Technol 170:160–166

    Article  CAS  Google Scholar 

  • Zhang Y, Wang M, Zheng Y, Tan H, Hsu BY, Yang ZC, Wong SY, Chang AY, Choolani M, Li X, Wang J (2013) PEOlated micelle/silica as dual-layer protection of quantum dots for stable and targeted bioimaging. Chem Mater 25:2976–2985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program for New Century Excellent Talents in University (grant no. NCET-13-0215), the Science and Technology Program of Guangzhou, China (grant no. 2014J4100039) and Open Foundation of State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (grant no. 201312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanzhu Guo or Xiaohui Wang.

Additional information

Wenjiao Ge and Yanzhu Guo have contributed equally to this work and are considered first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, W., Guo, Y., Zhong, H. et al. Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone). Cellulose 22, 2365–2374 (2015). https://doi.org/10.1007/s10570-015-0663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0663-6

Keywords

Navigation