Skip to main content
Log in

Drying cellulose-based materials containing copper nanoparticles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose and TEMPO nanofibrillated cellulose were used as substrates to synthesize copper nanoparticles from copper sulfate and they were subsequently dried using spray-, freeze- and modified freeze-drying processes. Morphological characterization, particle size distribution, copper quantification and the oxidation state of copper were evaluated. The morphology and the size distribution of the dried particles were characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy; particle size distribution was evaluated using laser diffraction; copper content was determined by inductively coupled plasma-optical emission spectroscopy; and finally, the oxidation state of copper was determined using X-ray photoelectron spectroscopy and X-ray diffraction. Plate-like structures of cellulose and cellulose-copper nanoparticles were formed after the freeze-drying process, with length and width over hundreds of microns. Most of the spray dried particles exhibited spherical shapes with the particle size ranging from around 300 nm to several microns. The spray drying process caused more copper loss compared with freeze drying, most probably because of the additional steps required to perform the spray drying. XPS results showed that the state of oxidation of the final dried material depends on the specific substrate. CMC surfaces exhibit mostly Cu0 and/or Cu+. On the contrary TNFC surfaces present mostly Cu2+. Solvent exchange process using ethanol and butanol creates more porous structures on the CMC substrates. A solvent exchange process using ethanol and tert-butanol sequence facilitates the formation of a more porous structure on TEMPO nanofibrillated cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethyl cellulose

TNFC:

TEMPO nanofibrillated cellulose

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl radical

XPS:

X-ray photoelectron spectroscopy

References

  • Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–1713

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int J Nanomed 7:3527–3535

    Article  CAS  Google Scholar 

  • Beeton ML, Aldrich-Wright JR, Bolhuis A (2014) The antimicrobial and antibiofilm activities of copper (II) complexes. J Inorg Biochem 140:167–172

    Article  CAS  Google Scholar 

  • Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H (2005) Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPts particles. Langmuir 21:1931–1936

    Article  CAS  Google Scholar 

  • Cady N, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antimicrobial activity of copper nanoparticles. Nanotechnology 25:1–12

    Article  CAS  Google Scholar 

  • Djurado E, Bouvier P, Lucazeau G (2000) Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman spectrometry. J Solid State Chem 149:399–407

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismark A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibers produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859

    Article  CAS  Google Scholar 

  • Ferreira T, Rasband W (2012) ImageJ user guide IJ 1.46r. Research Services Branch Web. http://imagej.nih.gov/ij/docs/guide/user-guide.pdf. Accessed 02 Oct 2012

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Gil M, Vicente J, Gaspar F (2010) Scale-up methodology for pharmaceutical spray drying. Chimica oggi/Chem Today 28(4):18–22

    CAS  Google Scholar 

  • Hou X, Jones BJ (2012) Inductively coupled plasma/optical emission spectrometry. In: Meyers RA (ed) Encyclopedia of analytical chemistry, 1st edn. Wiley, Hoboken, pp 1–17

    Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation-an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Linsdtrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Liu MS, Lin MCC, Huang IT, Wang CC (2006) Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 29(1):72–77

    Article  Google Scholar 

  • Markowicz A (2011) An overview of quantification methods in energy-dispersive X-ray fluorescence analysis. Pramana J Phys 76(2):321–329

    Article  Google Scholar 

  • Mclntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47(13):2208–2213

    Article  Google Scholar 

  • Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19

    Article  CAS  Google Scholar 

  • Pakowski Z (2007) Modern methods of drying nanomaterials. Trans Porous Med 66:19–27

    Article  Google Scholar 

  • Peng Y (2013) Cellulose nanofibrils drying and their utilization in reinforcing thermoplastic composites. Ph.D. Dissertation, University of Maine

  • Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  • Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461

    CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013a) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interf Sci 405:85–95

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013b) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Xia X, Xie C, Cai S, Yang Z, Yang X (2006) Corrosion characteristic of copper microparticles and copper nanoparticles in distilled water. Corros Sci 48:3924–3932

    Article  CAS  Google Scholar 

  • Zanchet D, Hall BD, Ugarte D (2000) Structure population in thiol-passivated gold nanoparticles. J Phys Chem B 104:11013–11018

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241

    Article  CAS  Google Scholar 

  • Zhong T, Oporto GS, Jaczynski J, Tesfai AT, Armstrong J (2013) Antimicrobial properties of the hybrid copper nanoparticles-carboxymethyl cellulose. Wood Fiber Sci 45(2):215–222

    CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided by NIFA McStennis WVA00098 “Efficient utilization of biomass for biopolymers in central Appalachia”, and USDA NIFA Grant No. 2013-34638-21481 “Development of novel hybrid cellulose nanocomposite film with potent biocide properties utilizing low quality Appalachian hardwoods”. Special thanks to Dr. Weiqiang Ding, from WVU Shared Research Facilities, for his assistance in the XPS, and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria S. Oporto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Oporto, G.S., Peng, Y. et al. Drying cellulose-based materials containing copper nanoparticles. Cellulose 22, 2665–2681 (2015). https://doi.org/10.1007/s10570-015-0646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0646-7

Keywords

Navigation