Skip to main content
Log in

Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work the macrophyte Typha domingensis was characterized. Cellulose nanocrystals (CNCs) were extracted and pretreated with alkali at 80 °C followed by hydrolysis with sulfuric acid 34 % (w/w) at 80 °C for 15 min. The plants were separated into two groups: the young and senescent. Then each plant was sectioned into three parts (top, bottom and middle). The middle and the bleached middle fibers were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and the chemical composition. The CNCs from the young middle part show values of 593 ± 482 nm in length and 12.6 ± 4.4 nm in diameter and the senescent part 704.4 ± 316 nm in length and 7.4 ± 3.5 nm in diameter. The results were obtained using an atomic force microscope and show the great potential of this fiber as a source of CNCs to reinforce polymeric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA (2009) Typha domingensis leaf powder for decontamination of aluminium iron zinc and lead: biosorption kinetics and equilibrium modeling. Int J Environ Sci Tech 6:243–248

    Article  CAS  Google Scholar 

  • Branciforti MC, Marinelli AL, Kobayashi M, Ambrosio JD, Monteiro MR, Nobre AD (2009) Wood polymer composites technology supporting the recovery and protection of tropical forests: the Amazonian Phoenix Project. Sustainability 1:431–1443

    Article  Google Scholar 

  • Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • De Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to higherformance tailored materials. De Gruyter, Berlin

    Book  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and he limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 4:1–33

    Article  Google Scholar 

  • Flausino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Habbibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry self-assembly and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  • Henrique MA, Silvério HA, Flausino-Neto WP, Pasquini D (2013) Valorization of agro-industrial waste mango seed by extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology crystallinity and thermal stability of cellulose nanocrystals from knaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764

    Article  CAS  Google Scholar 

  • Liu CF, Sun RC (2010) Cellulose. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels—chemistry extractives lignins hemicelluloses and cellulose, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Lopes CMA (2012) Taboa Lagoa: um Caso de Inovação e Desenvolvimento Sustentável da Samarco Mineração S.A. IX Simpósio de excelência em gestão e tecnologia

  • Lorensen B, Brix H, Mendelssohn IA, Mckee KL, Miao SL (2001) Growth biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat Bot 70:117–133

    Article  Google Scholar 

  • Lu J, Drzal LT (2010) Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym Sci B Polym Phys 48:153–161

    Article  CAS  Google Scholar 

  • Mansikkamanki P, Lahtinen M, Rissanen K (2007) The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: an X-ray powder diffraction study. Carbohydr Polym 68:35–43

    Article  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85:228–236

    Article  Google Scholar 

  • Mathew L, Joshy MK, Joseph R (2011) Isora fibre: a natural reinforcement for the development of high performance engineering materials. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites—green chemistry and technology. Springer, Berlin

    Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vásquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Parkd WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Peng P, Bian J, Sun RC (2010) Extractives. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels—chemistry extractives lignins hemicelluloses and cellulose, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Ren JL, Sun RC (2010) Hemicelluloses. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels—chemistry, extractives, lignins, hemicelluloses and cellulose, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Rosa SML, Rehman N, Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber based polymer composites and their applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites—green chemistry and technology. Springer, Berlin

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–793

    Article  CAS  Google Scholar 

  • Silveira TCL, Souza GCS, Rodrigues GG (2007) Crescimento, Produção Primária e Regeneração de Typha domingensis Pers: elementos para Avaliação do Uso Sustentável da Espécie. Revista Brasileira de Biociências 5:678–680

    Google Scholar 

  • Silvério HA, Flausino-Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  Google Scholar 

  • Siqueira G (2006) Produção e Caracterização de Compósitos Fenólicos com Fibras de Sisal Modificadas. Universidade Federal de Ouro Preto, Ouro preto

    Google Scholar 

  • Siqueira EJ (2008) Compósitos de matriz estervinílica reforçados com fibras da Luffa cylindrica modificadas superficialmente. Universidade Federal de Ouro Preto, Ouro preto

    Google Scholar 

  • Siqueira G, Abidillahi H, Bras J, Dufresne A (2010a) High reinforcing capability cellulose nanocrystals from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010b) Luffa cilíndrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5:727–740

    CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Sulyanova SN, Kheikera DM, Vainshteinb DI, den Hartogb HW (2003) Characterization of Na precipitates in electron irradiated NaCl crystals by wide angle X-ray scattering (WAXS). Solid State Commun 128:419–423

    Article  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  Google Scholar 

  • Teixeira EM, Oliveira CR, Mattoso LHC, Correa AC, Paladin PD (2010a) Nanofibras de algodão obtidos sob diferentes condições de hidrólise ácida. Polímeros 20:264–268

    Article  CAS  Google Scholar 

  • Teixeira EM, Corrêa AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC (2010b) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Article  CAS  Google Scholar 

  • Teixeira EM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crops Prod 33:63–66

    Article  Google Scholar 

  • Van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357

    Article  Google Scholar 

  • Xu F (2010) Structure, ultrastructure and chemical composition. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels—chemistry, extractives, lignins, hemicelluloses and cellulose, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Youssef H, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP—JP 2009-00855-0, CNPq—482585/2011-0 and CAPES for their financial support and Prof. Fatima C.M. Pina-Rodrigues for providing the T. domingensis samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparecido J. de Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

César, N.R., Pereira-da-Silva, M.A., Botaro, V.R. et al. Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22, 449–460 (2015). https://doi.org/10.1007/s10570-014-0533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0533-7

Keywords

Navigation