Skip to main content

Advertisement

Log in

Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC) from three agricultural crop (rice straw, corn and rapeseed stalk) residues was isolated with high-yield production using either high pressure homogenisation or a high speed blender. The fibres were extracted from the neat biomass via an NaClO2/acetic acid and alkali pulping process. TEMPO-mediated oxidation pretreatment at pH 7 and 10 was accomplished to facilitate the release of the cellulose microfibrils. The fibrillation yield, transparency degree and morphological characteristics of the ensuing NFC were analysed using the centrifugation method, transmittance measurement and SEM observation. The energy consumption during the disintegration process was also accessed. It was shown that the mode of lignin removal and the fibre pretreatment notably affected the nanofibrillation efficiency and energy demand. A successful production of NFC with yield exceeding 90 %, using a simple Waring blender, was achieved when the NaClO2/acetic acid delignification followed by a TEMPO-NaBr–NaClO oxidation at pH 10 was adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

D1:

NaOH delignification

D2:

NaClO2 delignification

O1:

TEMPO-mediated oxidation with NaClO2 at pH 7

O2:

TEMPO-mediated oxidation with NaClO at pH 10

HPH:

Disintegration using a pressure homogeniser (10 passes at 600 bar)

WB:

Disintegration using a Waring blender for 20 min

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Alila S, Besbes I, Rei Vilar M, Mutj P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    Article  CAS  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation. Carbohydr Polym 99:74–83

    Article  CAS  Google Scholar 

  • Besbes I, Rei Vilar M, Boufi S (2011a) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011b) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Boufi S, Kaddami H, Dufresne A (2014) Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites. Macromol Mater Eng 299:560–568

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  CAS  Google Scholar 

  • Chaker A, Alila S, Mutjé P, Rei Vilar M, Boufi S (2013) Effect of the Hemicellulose Content on the Nanofibrillation behaviour of Cellulose Pulps. Cellulose 20:2863–2875

    Article  CAS  Google Scholar 

  • Chaker A, Mutje P, Vilaseca F, Boufi S (2014) Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos 34:1999–2007

    Article  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  Google Scholar 

  • González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in bleached hardwood pulps. Bioresources 7:5167–5180

    Article  Google Scholar 

  • González I, Vilaseca F, Alcalá M, Pèlach M, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20(3):1425–1435

    Article  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibres from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int 50:5438–5466

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Mabrouk AB, Kaddami H, Boufi S, Erchiqui F, Dufresne A (2012) Cellulosic nanoparticles from alfa fibres (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19:843–853

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Rowell RM, Young RA, Rowell J (1997) Paper and composites from agro-based resources CRC Press Inc. Madison, WI

    Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849

    Article  CAS  Google Scholar 

  • Sihtola H, Kyrylund B, Laamanen L, Palenius I (1963) Comparison and conversion of viscosity and DP-values determined by different methods. Pap Timber 4:225–227

    Google Scholar 

  • Tejado A, Nur Alam M, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibres into cellulose nanofibre. Cellulose 19:831–842

    Article  CAS  Google Scholar 

  • Vartiainen J, Pöhler T, Sirola S, Pylkkänen L, Alenius H, Hokkanen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Boufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaker, A., Mutjé, P., Vilar, M.R. et al. Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21, 4247–4259 (2014). https://doi.org/10.1007/s10570-014-0454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0454-5

Keywords

Navigation