Skip to main content

Advertisement

Log in

Characterization of chitosan microparticles reinforced cellulose biocomposite sponges regenerated from ionic liquid

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The chitosan-microparticles reinforced cellulose biocomposite sponges regenerated from ionic liquid were prepared and characterized. Fourier transform infrared (FTIR) spectroscopy confirmed that the cellulose dissolved in 1-allyl-3-methylimidazolium chloride without derivatization. Chitosan particles as reinforcement were incorporated into the cellulose matrix. FTIR spectra indicated hydrogen bonding between hydroxyl groups of cellulose and chitosan. The biocomposite sponges showed uniform three-dimensional interconnected porous structures. The breaking strength of the sponges increased significantly, from 0.09 to 0.32 MPa with the addition of 1.0 wt% chitosan. The sponges also demonstrated excellent antibacterial activity against S. aureus and E. coli with the average inhibition zone diameters >2 mm and the inhibition rate higher than 80 %. Furthermore, the biocomposite sponges exhibited good moisture penetrability and high porosity. The water uptake ability of the sponge was >25 times of its weight in water with a fast swelling. The chitosan/cellulose composite sponge is expected to be a promising material for potential applications as wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Archana D, Dutta J, Dutta PK (2013a) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203

    Article  CAS  Google Scholar 

  • Archana D, Singh BK, Dutta J, Dutta PK (2013b) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539

    Article  CAS  Google Scholar 

  • Archana D, Upadhyay L, Tewari RP, Dutta J, Huang YB, Dutta PK (2013c) Chitosan–pectin–alginate as a novel scaffold for tissue engineering applications. Indian J Biotechnol 12:475–482

    CAS  Google Scholar 

  • Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  • Cui W, Kim DH, Imamura M, Hyon SH, Inoue K (2001) Tissue-engineered pancreatic islets: culturing rat islets in the chitosan sponge. Cell Transplant 10:499–502

    CAS  Google Scholar 

  • Deng M, Zhou Q, Du A, Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose–ionic liquid solutions. Mater Lett 63:1851–1854

    Article  CAS  Google Scholar 

  • Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  • Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharide-2: cellulose. Macromol Symp 262:8–22

    Article  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr Polym 82:227–232

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858

    Article  CAS  Google Scholar 

  • Jin AX et al (2009) Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: composition, structure, and thermal properties. Carbohydr Polym 78:609–619

    Article  CAS  Google Scholar 

  • Khan A et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  Google Scholar 

  • Kofuji K, Ito T, Murata Y, Kawashima S (2001) Biodegradation and drug release of chitosan gel beads in subcutaneous air pouches of mice. Biol Pharm Bull 24:205–208

    Article  CAS  Google Scholar 

  • Kondo T, Kasai W, Brown RM (2004) Formation of nematic ordered cellulose and chitin. Cellulose 11:463–474

    Article  CAS  Google Scholar 

  • Lai HL, Abu’Khalil A, Craig DQM (2003) The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int J Pharm 251:175–181

    Article  CAS  Google Scholar 

  • Lee YM et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417

    Article  CAS  Google Scholar 

  • Li Q, Zhou JP, Zhang LN (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Pol Phys 47:1069–1077

    Article  CAS  Google Scholar 

  • Liang S, Zhang L, Xu J (2007) Morphology and permeability of cellulose/chitin blend membranes. J Membrane Sci 287:19–28

    Article  CAS  Google Scholar 

  • Luo K, Yin J, Khutoryanskaya OV, Khutoryanskiy VV (2008) Mucoadhesive and elastic films based on blends of chitosan and hydroxyethylcellulose. Macromol Biosci 8:184–192

    Article  CAS  Google Scholar 

  • Mi FL et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:163–173

    Article  Google Scholar 

  • Mi FL et al (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res A 59:438–449

    Article  CAS  Google Scholar 

  • Mohamed NA, EI-Ghany NAA (2012) Synthesis and antimicrobial activity of some novel tereohthaloyl thiourea cross-linked carboxymethyl chitosan hydrogels. Cellulose 19:1879–1891

    Article  CAS  Google Scholar 

  • Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and liner cellulose. Cellulose 18:699–712

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Novotna K, Havelka P, Sopuch T et al (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278

    Article  CAS  Google Scholar 

  • Park YL et al (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 21:153–159

    Article  CAS  Google Scholar 

  • Pei Y, Wang XY, Huang WH, Liu P, Zhang LN (2013) Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose 20:1897–1900

    Article  CAS  Google Scholar 

  • Pulkkinen H, Tiitu V, Lammentausta E, Hämäläinen ER, Kiviranta I, Lammi MJ (2006) Cellulose sponge as a scaffold for cartilage tissue engineering. Bio-Med Mater Eng 16:S29–S35

    CAS  Google Scholar 

  • Raafa D, Bargen KV, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microb 74:3764–3773

    Article  Google Scholar 

  • Raymond S, Kvick A, Chanzy H (1995) The structure of celluloseII: A revisit. Macromolecules 28:8422–8425

    Article  CAS  Google Scholar 

  • Rhim JW (2011) Effect of clay contents on the mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:691–699

    Article  CAS  Google Scholar 

  • Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302:792–793

    Article  Google Scholar 

  • Shieh JJ, Huang RYM (1998) Chitosan/N-methylol nylon 6 blend membranes for the prevaporation separation of ethanol-water mixtures. J Membrane Sci 148:243–255

    Article  CAS  Google Scholar 

  • Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067

    Article  CAS  Google Scholar 

  • Stefanescu C, Daly WH, Negulescu II (2012) Bicomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87:435–443

    Article  CAS  Google Scholar 

  • Swatlosti RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  Google Scholar 

  • Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90

    Article  CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou I, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    Article  CAS  Google Scholar 

  • Wu Y et al (2004) Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

  • Zhang L, Guo J, Du Y (2002) Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution. J Appl Polym Sci 86:2025–2032

    Article  CAS  Google Scholar 

  • Zhang S, Li F, Yu J, Hsieh YL (2010) Dissolution behavior and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank National Natural Science Foundation of China (21174055),Graduate Students Innovation Project of Jiangsu Province in China (CXZZ1207246) and the Fundamental Research Funds for the Central Universities (JUDCF10038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoxia Wang or Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Wang, C., Zhu, P. et al. Characterization of chitosan microparticles reinforced cellulose biocomposite sponges regenerated from ionic liquid. Cellulose 21, 4405–4418 (2014). https://doi.org/10.1007/s10570-014-0440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0440-y

Keywords

Navigation