Skip to main content
Log in

Efficient Spinel Nanoparticle Catalysts ACo2O4(A = Cu, Ni, Mn) for Catalytic Oxidation of Toluene: Cation Substitution Effects

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co3O4 has been applied in several catalytic fields as a favorite catalyst. However, its performance is still not enough to replace noble metal catalysts in the catalytic oxidation of toluene. Modifications are needed to enhance its activity. Herein, a series of spinel nanoparticle catalysts ACo2O4 (A = Cu, Ni, and Mn) were synthesized by a simple template-free solvothermal process and applied to toluene oxidation. A fixed-bed reactor was used to investigate the catalytic activity. The CuCo2O4 catalyst showed the best activity with T50 = 225 °C and T90 = 239 °C, which was much better than the other two catalysts. This demonstrated that tetrahedral A-site cation is crucial in determining the activity of ACo2O4 catalysts. Higher Co3+ concentration (Co3+/Co2+ = 1.96), more surface-adsorbed oxygen species (Oads/O = 36.67%), and enhanced low-temperature reducibility, which are outcomes of cation substitution, are fundamental causes of efficient activity. In addition, the CuCo2O4 catalyst showed good long-term stability after 30 h of reaction, and the toluene conversion rate remained above 95% at 250 °C, which has considerable potential for practical application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  2. Deng J, He S, Xie S, Yang H, Liu Y, Guo G, Dai H (2015) Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts: a high-efficiency catalyst for the oxidative removal of toluene. Environ Sci Technol 49(18):11089–11095. https://doi.org/10.1021/acs.est.5b02350

    Article  CAS  PubMed  Google Scholar 

  3. Charbotel B, Fervers B, Droz JP (2014) Occupational exposures in rare cancers: A critical review of the literature. Crit Rev Oncol Hematol 90(2):99–134. https://doi.org/10.1016/j.critrevonc.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  4. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54. https://doi.org/10.1016/j.jhazmat.2011.08.060

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116213

    Article  PubMed  PubMed Central  Google Scholar 

  6. Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109(1–3):113–139. https://doi.org/10.1016/j.jhazmat.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  7. Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H (2018) Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/alpha-MnO(2) nanotubes. J Environ Sci (China) 64:276–288. https://doi.org/10.1016/j.jes.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  8. Sedjame H-J, Fontaine C, Lafaye G, Barbier J Jr (2014) On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation. Appl Catal B 144:233–242. https://doi.org/10.1016/j.apcatb.2013.07.022

    Article  CAS  Google Scholar 

  9. Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B 100(3–4):403–412. https://doi.org/10.1016/j.apcatb.2010.08.023

    Article  CAS  Google Scholar 

  10. Li J-J, Yu E-Q, Cai S-C, Chen X, Chen J, Jia H-P, Xu Y-J (2019) Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl Catal B 240:141–152. https://doi.org/10.1016/j.apcatb.2018.08.069

    Article  CAS  Google Scholar 

  11. Einaga H, Hyodo S, Teraoka Y (2010) Complete oxidation of benzene over perovskite-type oxide catalysts. Top Catal 53(7–10):629–634. https://doi.org/10.1007/s11244-010-9497-5

    Article  CAS  Google Scholar 

  12. Liu Q, Wang L-C, Chen M, Cao Y, He H-Y, Fan K-N (2009) Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J Catal 263(1):104–113. https://doi.org/10.1016/j.jcat.2009.01.018

    Article  CAS  Google Scholar 

  13. Kołodziej A, Łojewska J, Tyczkowski J, Jodłowski P, Redzynia W, Iwaniszyn M, Zapotoczny S, Kuśtrowski P (2012) Coupled engineering and chemical approach to the design of a catalytic structured reactor for combustion of VOCs: Cobalt oxide catalyst on knitted wire gauzes. Chem Eng J 200–202:329–337. https://doi.org/10.1016/j.cej.2012.06.067

    Article  CAS  Google Scholar 

  14. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749. https://doi.org/10.1038/nature07877

    Article  CAS  PubMed  Google Scholar 

  15. Zhai G, Wang J, Chen Z, An W, Men Y (2018) Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets. Chem Eng J 337:488–498. https://doi.org/10.1016/j.cej.2017.12.141

    Article  CAS  Google Scholar 

  16. Bai G, Dai H, Deng J, Liu Y, Wang F, Zhao Z, Qiu W, Au CT (2013) Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene. Appl Catal A 450:42–49. https://doi.org/10.1016/j.apcata.2012.09.054

    Article  CAS  Google Scholar 

  17. X Wang, Y Liu, T Zhang, Y Luo, Z Lan, K Zhang, J Zuo, L Jiang, R Wang (2017) Geometrical-site-dependent catalytic activity of ordered mesoporous co-based spinel for benzene oxidation: in situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. doi:https://doi.org/10.1021/acscatal.6b03547

  18. González-Prior J, López-Fonseca R, Gutiérrez-Ortiz JI, de Rivas B (2016) Oxidation of 1,2-dichloroethane over nanocube-shaped Co3O4 catalysts. Appl Catal B 199:384–393. https://doi.org/10.1016/j.apcatb.2016.06.046

    Article  CAS  Google Scholar 

  19. Lim TH, Park SB, Kim JM, Kim DH (2017) Ordered mesoporous MCo2O4 (M = Cu, Zn and Ni) spinel catalysts with high catalytic performance for methane combustion. J Mol Catal A: Chem 426:68–74. https://doi.org/10.1016/j.molcata.2016.11.002

    Article  CAS  Google Scholar 

  20. Wang X, Zhao W, Wu X, Zhang T, Liu Y, Zhang K, Xiao Y, Jiang L (2017) Total oxidation of benzene over ACo 2 O 4 (A = Cu, Ni and Mn) catalysts: In situ DRIFTS account for understanding the reaction mechanism. Appl Surf Sci 426:1198–1205. https://doi.org/10.1016/j.apsusc.2017.07.269

    Article  CAS  Google Scholar 

  21. Li H, Sun Z, Tian Y, Cui G, Yan S (2015) Facile and cost-effective synthesis of CNT@MCo2O4 (M = Ni, Mn, Cu, Zn) core–shell hybrid nanostructures for organic dye removal. RSC Adv 5(97):79765–79773. https://doi.org/10.1039/c5ra14748d

    Article  CAS  Google Scholar 

  22. Zhu J, Gao Q (2009) Mesoporous MCo2O4 (M=Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater 124(1–3):144–152. https://doi.org/10.1016/j.micromeso.2009.05.003

    Article  CAS  Google Scholar 

  23. Hu J, Zhou J, Zhang T, Liu S, Du K (2022) Characterization and performance of SmxA1-xMnO3 (A=Ce, Sr, Ca) perovskite for efficient catalytic oxidation of toluene. Korean J Chem Eng 39(11):3032–3038. https://doi.org/10.1007/s11814-022-1194-0

    Article  CAS  Google Scholar 

  24. Li G, Li L, Shi J, Yuan Y, Li Y, Zhao W, Shi J (2014) One-pot pyrolytic synthesis of mesoporous MCo2O4(4.5) (M=Mn, Ni, Fe, Cu) spinels and its high efficient catalytic properties for CO oxidation at low temperature. J Mol Catal A: Chem 390:97–104. https://doi.org/10.1016/j.molcata.2014.03.012

    Article  CAS  Google Scholar 

  25. K Li, T Li, Y Dai, Y Quan, J Zhao, J Ren 2022 Highly active urchin-like MCo2O4 (M = Co, Cu, Ni or Zn) spinel for toluene catalytic combustion. Fuel. doi:https://doi.org/10.1016/j.fuel.2022.123648

  26. Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, Prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153(1):74–81. https://doi.org/10.1006/jssc.2000.8749

    Article  CAS  Google Scholar 

  27. Ma F-X, Yu L, Xu C-Y, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9(3):862–866. https://doi.org/10.1039/c5ee03772g

    Article  Google Scholar 

  28. Han X, He G, He Y, Zhang J, Zheng X, Li L, Zhong C, Hu W, Deng Y, Ma TY (2017) Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv Energy Mater. https://doi.org/10.1002/aenm.201702222

    Article  Google Scholar 

  29. Zeng J, Xie H, Zhang G, Cheng X, Zhou G, Jiang Y (2020) Facile synthesis of CuCo spinel composite oxides for toluene oxidation in air. Ceram Int 46(13):21542–21550. https://doi.org/10.1016/j.ceramint.2020.05.257

    Article  CAS  Google Scholar 

  30. Wang D, Cuo Z, Li S, Zhang M, Chen Y (2020) In situ anchored NiCo2O4 on a nickel foam as a monolithic catalyst by electro-deposition for improved benzene combustion performance. CrystEngComm 22(13):2371–2379. https://doi.org/10.1039/d0ce00095g

    Article  CAS  Google Scholar 

  31. Fang Z, Rehman Su, Sun M, Yuan Y, Jin S, Bi H (2018) Hybrid NiO–CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor. J Mater Chem A 6(42):21131–21142. https://doi.org/10.1039/c8ta08262f

    Article  CAS  Google Scholar 

  32. Zhao S, Li K, Jiang S, Li J (2016) Pd–Co based spinel oxides derived from pd nanoparticles immobilized on layered double hydroxides for toluene combustion. Appl Catal B 181:236–248. https://doi.org/10.1016/j.apcatb.2015.08.001

    Article  CAS  Google Scholar 

  33. Teng F, Chen M, Li G, Teng Y, Xu T, Hang Y, Yao W, Santhanagopalan S, Meng DD, Zhu Y (2011) High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Appl Catal B 110:133–140. https://doi.org/10.1016/j.apcatb.2011.08.035

    Article  CAS  Google Scholar 

  34. Zhang C, Wang J, Yang S, Liang H, Men Y (2019) Boosting total oxidation of acetone over spinel MCo(2)O(4) (M = Co, Ni, Cu) hollow mesoporous spheres by cation-substituting effect. J Colloid Interface Sci 539:65–75. https://doi.org/10.1016/j.jcis.2018.12.061

    Article  CAS  PubMed  Google Scholar 

  35. Lu C-Y, Tseng H-H, Wey M-Y, Liu L-Y, Kuo J-H, Chuang K-H (2009) Al2O3-supported Cu–Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas. Fuel 88(2):340–347. https://doi.org/10.1016/j.fuel.2008.09.012

    Article  CAS  Google Scholar 

  36. Yan Q, Li X, Zhao Q, Chen G (2012) Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J Hazard Mater 209–210:385–391. https://doi.org/10.1016/j.jhazmat.2012.01.039

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Arandiyan H, Liu Y, Liang Y, Peng Y, Bartlett S, Dai H, Rostamnia S, Li J (2018) Template-free scalable synthesis of flower-like Co3-xMnxO4 spinel catalysts for toluene oxidation. ChemCatChem 10(16):3429–3434. https://doi.org/10.1002/cctc.201800598

    Article  CAS  Google Scholar 

  38. Wang X, Wen W, Mi J, Li X, Wang R (2015) The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Appl Catal B 176–177:454–463. https://doi.org/10.1016/j.apcatb.2015.04.038

    Article  CAS  Google Scholar 

  39. Zhao H, Wang H, Qu Z (2022) Synergistic effects in Mn-Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs. J Environ Sci (China) 112:231–243. https://doi.org/10.1016/j.jes.2021.05.003

    Article  CAS  PubMed  Google Scholar 

  40. Tang W, Li W, Li D, Liu G, Wu X, Chen Y (2014) Synergistic effects in porous Mn–Co mixed oxide nanorods enhance catalytic deep oxidation of benzene. Catal Lett 144(11):1900–1910. https://doi.org/10.1007/s10562-014-1340-3

    Article  CAS  Google Scholar 

  41. Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J Hazard Mater 349:119–127. https://doi.org/10.1016/j.jhazmat.2018.01.053

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Li X, Zeng X, Zhu T (2019) Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeO mixed oxides for propane combustion. Appl Catal A 572:61–70. https://doi.org/10.1016/j.apcata.2018.12.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chengdu Science and Technology Innovation Program (2022-YF05-00159-SN) and Opening Project of Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province (YQKF202113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiabin Zhou or Dan Liu.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuge, X., Zhou, J., Chen, Z. et al. Efficient Spinel Nanoparticle Catalysts ACo2O4(A = Cu, Ni, Mn) for Catalytic Oxidation of Toluene: Cation Substitution Effects. Catal Lett 154, 2036–2045 (2024). https://doi.org/10.1007/s10562-023-04460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04460-6

Keywords

Navigation