Skip to main content
Log in

Characterization and performance of SmxA1-xMnO3 (A=Ce, Sr, Ca) perovskite for efficient catalytic oxidation of toluene

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalytic oxidation of toluene was implemented over SmMnO3, Sm0.8A0.2MnO3 (ABO3, A=Ce, Sr, Ca) and Sm1-xCaxMnO3 (x=0.0, 0.1, 0.2, 0.3) perovskite oxides synthesized via sol-gel method. The effects of A-site substitution of SmMnO3 and the amount of calcium substitution of SmMnO3 perovskite-type catalyst on the catalytic activity of toluene were investigated in a fixed bed reactor. The structure and chemical properties of the perovskites were studied by XRD, SEM, XPS, and H2-TPR. The results showed that the substitution of Ce and Ca had a positive impact about the catalytic properties of toluene oxidation, while a negative impact was caused by the substitution of Sr. The catalytic activity of toluene oxidation followed the order of Sm0.8Ca0.2MnO3>Sm0.8Ce0.2MnO3>SmMnO3>Sm0.8Sr0.2MnO3 in terms of the temperature of T90%, at toluene concentration=1,000 ppm and weight hourly space velocity (WHSV)=3,000 mL/ g·h. Sm0.8Ca0.2MnO3 had the highest catalytic capacity (T90%=238 °C), which could be attributed to its high adsorbed oxygen concentration, Mn4+/Mn3+, and the best low-temperature reducibility (H2 consumption=0.36). Meanwhile, the Sm0.8Ca0.2MnO3 catalysts showed great long-term stability after 30 h of the reaction, and the toluene degradation rate remained over 95% at 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Kamal, S. A. Razzak and M. M. Hossain, Atmos. Environ., 140, 117 (2016).

    Article  CAS  Google Scholar 

  2. X. Li, Y. Niu, H. Su and Y. Qi, Catal. Lett., 112, 91 (2021).

    Google Scholar 

  3. C. A. Weitekamp, T. Stevens, M. J. Stewart, P. Bhave and M. I. Gilmour, Sci. Total Environ., 04, 135 (2020).

    Google Scholar 

  4. M. Song, K. Kim, C. Cho and D. Kim, Processes, 9, 112 (2021).

    Article  Google Scholar 

  5. P. F. Biard, A. Couvert and S. Giraudet, J. Ind. Eng. Chem., 59, 70 (2018).

    Article  CAS  Google Scholar 

  6. C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li and J. Xiao, Chem. Eng. J., 370, 1128 (2019).

    Article  CAS  Google Scholar 

  7. Z. Chang, C. Wang and G. Zhang, Plasma Processes Polym., 17, 332 (2020).

    Google Scholar 

  8. T. M. Fujimoto, M. Ponczek, U. L. Rochetto, R. Landers and E. Tomaz, Environ. Sci. Pollut. Res. Int., 24, 6390 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Guo, M. Wen, G. Li and T. An, Appl. Catal., B., 281, 1336 (2021)

    Article  Google Scholar 

  10. C. H. Zhang, C. Wang, S. Gil, A. Boreave, L. Retailleau, Y. L. Guo, J. L. Valverde and A. Giroir-Fendler, Appl. Catal., B., 201, 552 (2017).

    Google Scholar 

  11. G. Spezzati, A. D. Benavidez, A. T. DeLaRiva, Y. Su, J. P. Hofmann, S. Asahina, E. J. Olivier, J. H. Neethling, J. T. Miller, A. K. Datye and E. J. M. Hensen, Appl. Catal. B, 243, 36 (2019).

    Article  CAS  Google Scholar 

  12. X.-H. Yan, H.-F. Zhang, C.-L. Wu, C. Zhang and S.-H. Li, Int. J. Inorg. Mater., 34, 43 (2019).

    Google Scholar 

  13. H. Einaga, S. Hyodo and Y. eraoka, Top. Catal., 53, 629 (2010).

    Article  CAS  Google Scholar 

  14. L. Liu, J. Sun, J. Ding, Y. Zhang, J. Jia and T. Sun, Inorg. Chem., 58, 14275 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. P. Liu, G. Wei, X. Liang, D. Chen, H. He, T. Chen, Y. Xi, H. Chen, D. Han and J. Zhu, Appl. Clay Sci., 161, 265 (2018).

    Article  CAS  Google Scholar 

  16. N. Rezlescu, E. Rezlescu, P. D. Popa, C. Doroftei and M. Ignat, Composites, Part B, 60, 515 (2014).

    Google Scholar 

  17. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri and H. Alamdari, Chem. Rev., 114, 10292 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave, L. Retailleau, A. Baylet and A. Giroir-Fendler, Appl. Catal., B, 148, 490 (2014).

    Google Scholar 

  19. A. E. Hannora and F. F. Hanna, J. Mater. Sci.: Mater. Electron., 30, 12456 (2019).

    CAS  Google Scholar 

  20. L. Z. Liu, J. X. Li, H. B. Zhang, L. Li, P. Zhou, X. L. Meng, M. M. Guo, J. P. Jia and T. H. Sun, J. Hazard. Mater., 362, 178 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. L. Z. Liu, H. B. Zhang, J. P. Jia, T. H. Sun and M. M. Sun, Inorg. Chem., 57, 8451 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. J. Y. Min, L. L. Yu, P. S. Tang and H. F. Chen, Key Eng. Mater., 748, 403 (2017).

    Article  Google Scholar 

  23. X. B. Zhu, X. Tu, M. H. Chen, Y. Yang, C. H. Zheng, J. S. Zhou and X. Gao, Catal. Commun., 92, 35 (2017).

    Article  CAS  Google Scholar 

  24. X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng and X. Tu, Appl. Catal. B, 293, 170 (2015).

    Google Scholar 

  25. J. Wang, Y. Su, X. Wang, J. Chen, Z. Zhao and M. Shen, Catal. Commun., 25, 106 (2012).

    Article  CAS  Google Scholar 

  26. G. Fierro, M. Lo Jacono and M. Inversi, Top. Catal., 10, 39 (2000).

    Article  CAS  Google Scholar 

  27. Y. Wu, L. Li, B. Chu, Y. Yi, Z. Qin, M. Fan, Q. Qin, H. He, L. Zhang, L. Dong, B. Li and L. Dong, Appl. Catal. A, 568, 43 (2018).

    Article  CAS  Google Scholar 

  28. N. Miniajluk, J. Trawczynski and M. Zawadzki, Appl. Catal. A, 531, 119 (2017).

    Article  CAS  Google Scholar 

  29. Y. Lu, Q. Dai and X. Wang, Catal. Commun., 54, 114 (2014).

    Article  CAS  Google Scholar 

  30. C. Zhang, W. Hua, C. Wang, Y. Guo, Y. Guo, G. Lu, A. Baylet and A. Giroir-Fendler, Appl. Catal. B, 134, 310 (2013).

    Article  Google Scholar 

  31. M. Guo, L. Liu, J. Gu, H. Zhang, X. Min, J. Liang, J. Jia, K. Li and T. Sun, Chin. J. Chem. Eng., 34, 278 (2021).

    CAS  Google Scholar 

  32. J. Yang, L. Li, X. Yang, S. Song, J. Li, F. Jing and W. Chu, Catal. Today, 327, 19 (2019).

    Article  CAS  Google Scholar 

  33. A. Giroir-Fendler, M. Ives-Fortunato, M. Richard, C. Wang, J. A. Diaz, S. Gil, C. Zhang, F. Can, N. Bion and Y. Guo, Appl. Catal. B, 180, 29 (2016).

    Article  CAS  Google Scholar 

  34. S. I. Suarez-Vazquez, S. Gil, J. M. Garcia-Vargas, A. Cruz-Lopez and A. Giroir-Fendler, Appl. Catal. B, 223, 201 (2018).

    Article  Google Scholar 

  35. X. Cui, H. Yang, J. Zhang, T. Wu, P. Zhao and Q. Guo, Catal. Lett., 151, 3323 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Sichuan Science and Technology Program (2020YFS0305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiabin Zhou or Ke Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhou, J., Zhang, T. et al. Characterization and performance of SmxA1-xMnO3 (A=Ce, Sr, Ca) perovskite for efficient catalytic oxidation of toluene. Korean J. Chem. Eng. 39, 3032–3038 (2022). https://doi.org/10.1007/s11814-022-1194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1194-0

Keywords

Navigation