Skip to main content
Log in

A novel high-performance CeO2-CuMn2O4 catalyst for toluene degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A series of spinel CuM2O4 (M = Mn, Fe, and Al) was used as the catalyst to investigate the effective degradation of toluene, and then CuMn2O4 with better catalytic activity was selected as the research object to study its activity at different ratios of Cu and Mn. Meanwhile, CeO2 was introduced to modify CuMn bimetallic oxide to improve its catalytic performance. The structure, morphology, and valence states of surface elements of as-prepared catalysts were characterized by XRD, TEM, SEM, N2 adsorption-desorption, XPS, and H2-TPR. Using toluene as a probe molecule, the catalytic activity of the catalyst was tested and the results showed that the conversion rate of toluene catalyzed by CeO2-CuMn2O4 catalyst can reach 90% at 200 °C (T90) and 100% at 240 °C (T100). The CO2 yield can also reach 100% at 248 °C. Moreover, the possible catalytic mechanism for toluene by the CeO2-CuMn2O4 was briefly explored. The catalytic oxidation of toluene over the oxide follows the Mars-van Krevelen mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

References

  • Bastos SST, Carabineiro SAC, Órfão JJM, Pereira MFR, Delgado JJ, Figueiredo JL (2012) Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catal Today 180:148–154

    CAS  Google Scholar 

  • Carabineiro SAC, Chen X, Konsolakis M, Psarras AC, Tavares PB, Órfão JJM, Pereira MFR, Figueiredo JL (2015) Catalytic oxidation of toluene on Ce-Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods Catal. Today 244:161–171

    CAS  Google Scholar 

  • Chen Z, Liu X, Cho K, Chen R, Shan B (2015) Density functional theory study of the oxygen chemistry and NO oxidation mechanism on low-index surfaces of SmMn2O5 mullite. ACS Catal 5:4913–4926

    CAS  Google Scholar 

  • Chen J, Chen X, Xu W, Xu Z, Jia H, Chen J (2018) Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl Catal B Environ 224:825–835

    CAS  Google Scholar 

  • Cheng L, Men Y, Wang J, Wang H, An W, Wang YQ, Duan ZC, Liu J (2017) Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl Catal B Environ 204:374–384

    CAS  Google Scholar 

  • Colman Lerner JE, Sanchez EY, Sambeth JE (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos Environ 55:440–447

    CAS  Google Scholar 

  • Dong C, Qu ZP, Qin Y, Fu Q (2019) The highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques. ACS Catal 9:6698–6710

    CAS  Google Scholar 

  • Feng Z, Liu Q, Chen Y, Zhao PF, Peng Q, Cao K, Chen R, Shen MQ, Shan B (2017) Macroporous SmMn2O5 mullite for NOx-assisted soot combustion. Catal Sci Technol 7(4):838–847

    CAS  Google Scholar 

  • Feng ZT, Ren QM, Peng RS, Mo SP, Zhang MY, Fu ML, Chen LM, Ye DQ (2019) Effect of CeO2 morphologies on toluene catalytic combustion. Catal Today 332:177–182

    CAS  Google Scholar 

  • Jian YF, Ma MD, Chen CW, Liu C, Yu YK, Hao ZP, He C (2018) Tuning the micromorphology and exposed facets of MnOx promotes methyl ethyl ketone low-temperature abatement: boosting oxygen activation and electron transmission. Catal Sci Technol 8:3863–3875

    CAS  Google Scholar 

  • Kapteijn F, Singoredjo L, Andreini A (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 3(2–3):173–189

    CAS  Google Scholar 

  • Karuppiah J, Linga Reddy E, Manoj Kumar Reddy P, Ramaraju B, Karvembu R, Subrahmanyam C (2012) Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J Hazard Mater 237:283–289

    Google Scholar 

  • Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98(3–4):180–185

    CAS  Google Scholar 

  • Kondratowicz T, Drozdek M, Rokicińska A, Natkański P, Michalik M, Kuśtrowski P (2019) Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene. Microporous Mesoporous Mater 279:446–455

    CAS  Google Scholar 

  • Laguna OH, Centeno MA, Boutonnet M, Odriozola JA (2011) Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions. Appl Catal B Environ 106(3–4):621–629

    CAS  Google Scholar 

  • Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67

    CAS  Google Scholar 

  • Li HB, Wang WH, Qian X, Cheng Y, Xie X, Xie XJ, Liu JY, Sun SH, Zhou JG, Hu YF, Xu JP, Li L, Zhang Y, Du XW, Gao KH, Li ZQ, Zhang C, Wang SD, Chen HJ, Zhao YD, Lu F, Wang WC, Liu H (2016) Identifying the descriptor governing NO oxidation on mullite Sm (Y, Tb, Gd, Lu) Mn2O5 for diesel exhaust cleaning. Catal SciTechnol 6:3971–3975

    CAS  Google Scholar 

  • Liu XS, Jin ZN, Lu JQ, Wang XX, Luo MF (2010) Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation. Chem Eng J 162:151–157

    CAS  Google Scholar 

  • Liu S, Wu XD, Liu W, Chen W, Ran R, Li M, Weng D (2016) Soot oxidation over CeO2, and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337:188–198

    CAS  Google Scholar 

  • López JM, Gilbank AL, García T, Solsona B, Agouram S, Murciano LT (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B Environ 174:403–412

    Google Scholar 

  • Lu XN, Song CY, Jia SH, Tong ZS, Tang XL, Teng YX (2015) Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-grapheme. Chem Eng J 260:776–784

    CAS  Google Scholar 

  • Luo MM, Cheng Y, Peng XZ, Pan W (2019) Copper modified manganese oxide with tunnel structure as efficient catalyst for low temperature catalytic combustion of toluene. Chem Eng J 369:758–765

    CAS  Google Scholar 

  • Meher SK, Rao GR (2017) Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: microstructural effect on promoting Pt/C for methanol electrooxidation. ACS Catal:22795–22809

  • Mo SP, Zhang Q, Li JQ, Sun YH, Ren QM, Zou SB (2020) Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B Environ 264:118–464

    Google Scholar 

  • Niu J, Qian H, Liu J, Liu HB, Zhang P, Duan EH (2018) Process and mechanism of toluene oxidation using Cu1-yMn2CeyOx/sepiolite prepared by the co-precipitation method. J Hazard Mater 357:332–340

    CAS  Google Scholar 

  • Njagi EC, Chen CH, Genuino H, Huang H, Suib SL (2010) Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Appl Catal B Environ 99(1–2):103–110

    CAS  Google Scholar 

  • Qian X, Yue D, Tian Z, Reng M, Zhu Y, Kan M, Zhang T, Zhao Y (2016) Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl Catal B Environ 193:16–21

    CAS  Google Scholar 

  • Rodrigo B, Fabio ST, Martin S (2016) Synthesis and characterization of Fe-doped CO2 for application in the NO selective catalytic reduction by CO. Top Catal 59:1772–1786

    Google Scholar 

  • Shen B, Liu T, Zhao N, Yang XY, Deng LD (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J Environ Sci 22(9):1447–1454

    CAS  Google Scholar 

  • Shen Q, Zhang L, Sun N, Wang H, Zhong L, He C, Wei W, Sun Y (2017) Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem Eng J 322:46–55

    CAS  Google Scholar 

  • Song WY, Chen LL, Deng JL, Jing MZ, Zheng HL, Liu J, Zhao Z (2018) Combination of density functional theory and microkinetic study to the Mn-Doped CeO2 catalysts for CO oxidation: a case study to understand the doping metal content. J Phys Chem C 122:25290–25300

    CAS  Google Scholar 

  • Sun H, Chen S, Wang P, Quan X (2011) Catalytic oxidation of toluene over manganese oxide octahedral molecular sieves (OMS-2) synthesized by different methods. Chem Eng J 178:191–196

    CAS  Google Scholar 

  • Sun M, Yu L, Ye F, Diao G, Yu Q, Hao Z, Zheng Y, Yuan L (2013) Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem Eng J 220:320–327

    CAS  Google Scholar 

  • Tang ZR, Kondrat SA, Dickinson C, Bartley JK, Carley AF, Taylor SH, Davies TE, Allix M, Rosseinsky MJ, Claridge JB, Xu Z, Romani S, Crudace MJ, Hutchings GJ (2011) Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catal Sci Technol 1:740–746

    Google Scholar 

  • Trawczyński J, Bielak B, Miśta W (2005) Oxidation of ethanol over supported manganese catalysts-effect of the carrier. Appl Catal B Environ 55:277–285

    Google Scholar 

  • Wagloehner S, Nitzer-Noski M, Kureti S (2015) Oxidation of soot on manganese oxide catalysts. Chem Eng J 259:492–504

    CAS  Google Scholar 

  • Wang W, McCool G, Kapur N, Yuan G, Shan B, Nguyen M, Graham UM (2012) Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd) Mn2O5 for NO oxidation in diesel exhaust. Science 337(6096):832–835

    CAS  Google Scholar 

  • Wang WL, Meng Q, Xue Y, Weng X, Sun P, Wu Z (2018) Lanthanide perovskite catalysts for oxidation of chloroaromatics: secondary pollution and modifications. J.Catal 366:213–222

    CAS  Google Scholar 

  • Wang H, Chen H, Wang Y (2019a) Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chem Eng J 361:1161–1172

    CAS  Google Scholar 

  • Wang JG, Zhang C, Yang SF, Liang H, Men Y (2019b) Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3-xO4 solid solutions. Catal Sci Technol 9(22):6379–6390

    CAS  Google Scholar 

  • Wang X, Ying JW, Mai YL, Zhang JJ, Chen JZ, Wen MT, Yu L (2019c) MOF-derived metal oxide composite Mn2Co1Ox/CN for efficient formaldehyde oxidation at low temperature. Catal Sci Technol 9:5845–5854

    CAS  Google Scholar 

  • Wang Y, Yang DY, Li SZ (2019d) Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem Eng J 357:258–268

    CAS  Google Scholar 

  • Wei Y, Ni L, Li M, Zhao J (2017) A template-free method for preparation of MnO2 catalysts with high surface areas. Catal Today 297:188–192

    CAS  Google Scholar 

  • Xie AJ, Zhou XM, Huang XY, Ji L, Zhou WT, Luo SP, Yao C (2017) Cerium-loaded MnOx/attapulgite catalyst for the low-temperature NH3-selective catalytic reduction. J Ind Eng Chem 49:230–241

    CAS  Google Scholar 

  • Yang CT, Miao G, Pi YH, Xia QB, Wu JL, Li Z, Xiao J (2019a) Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J 370:1128–1153

    CAS  Google Scholar 

  • Yang S, Wang J, Chai W, Yang S, Zhu J, Men Y (2019b) Enhanced soot oxidation activity over CuO/CeO2 mesoporous nanosheets. Catal Sci Technol 9:1699–1709

    CAS  Google Scholar 

  • Yang DY, Fu SY, Huang SS, Deng W, Wang Y, Guo LM, Ishihara T (2020) The preparation of hierarchical Pt/ZSM-5 catalysts and their performance for toluene catalytic combustion. Microporous Mesoporous Mater 296:109802

    CAS  Google Scholar 

  • Yu XH, Wang LY, Chen MZ, Fan XQ, Zhao Z, Cheng K, Chen YS, Sojk Z, Wei YC, Liu J (2019) Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1-xOδ/SiO2 catalysts. Appl Catal B Environ 254:246–259

    CAS  Google Scholar 

  • Zhan Y, Han J, Bao Z, Cao BB, Li YB, Street J, Yu F (2017) Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts. Mol Catal 436:248–258

    CAS  Google Scholar 

  • Zhang DS, Zhang L, Shi LY, Fang C, Li HR, Gao RH, Huang L, Zhang JP (2013) Insitu supported M-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with. Nanoscale 5(3):1127–1136

    CAS  Google Scholar 

  • Zhang XD, Yin W, Yang YQ, Dan C (2015) Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts. Acta Phys Chim Sin 31:1633–1646

    CAS  Google Scholar 

  • Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    CAS  Google Scholar 

  • Zhang S, You J, Kennes C, Cheng Z, Ye J, Chen D, Chen J, Wang L (2018) Current advances of VOCs degradation by bioelectrochemical systems: a review. Chem Eng J 334:2625–2637

    CAS  Google Scholar 

  • Zhang T, Li H, Yang Z, Cao F, Li L, Chen HJ, Liu HK, Wu XJ, Hong ZL, Wang WC (2019) Electrospun YMn2O5 nanofibers: A highly catalytic activity for NO oxidation. Appl Catal B Environ 247:133–141

    CAS  Google Scholar 

  • Zhao L, Zhang Z, Li Y, Leng X, Zhang T, Yuan F, Niu X, Zhu Y (2019) Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl Catal B Environ 245:502–512

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21978026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Xie or Shiping Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Xie, A., Wang, Q. et al. A novel high-performance CeO2-CuMn2O4 catalyst for toluene degradation. Environ Sci Pollut Res 27, 43150–43162 (2020). https://doi.org/10.1007/s11356-020-10190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10190-8

Keywords

Navigation