Skip to main content
Log in

Two Approaches for CAL-B-Catalyzed Enantioselective Deacylation of a Set of α-Phenyl Ethyl Esters: Organic Solvent with Sodium Carbonate and Micro-aqueous Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein, we report an efficient enantioselective cleavage of the acyl- moiety of a set of α- phenyl ethyl esters with different chain-lengths catalyzed by lipase B from Candida antarctica (CAL-B) by comparing two reactional approaches: anhydrous media with sodium carbonates and micro-aqueous medium. The deacylation is performed in organic solvent, in the presence of Na2CO3 in the first case, and by addition of a drop of phosphate buffer solution pH 7 in the second. The results show the high efficiency of the deacylation in the presence of the sodium carbonate for the enzymatic resolution of all the esters and that in term of reactivity (31% ≤ conv ≤ 50%) and selectivity (E > 200). While, during the hydrolysis in micro-aqueous media, the conversion is strongly affected by the length of the acyl-chain side, the conversion decreases from conv = 50% with the 1-phenylethyl acetate 1a to conv = 19% with 1-phenyethyl dodecanoate 6a, and this, even if the selectivity remains high (E > 89). In both conditions, the lipase CAL-B shows a high enantioselectivities in favor of (R)-1-phenyl ethanol enantiomer (conv > 45%, E > 200) but the reactivity is modulated by the form and the size of the acyl-chain side.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Breuer M, Ditrich K, Habicher T, Hauer B, Keseler M, Sturmer S, Zelinski T (2004) Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  2. Sheldon RA, Brady D (2019) Chem Sus Chem 12:2859–2881

    Article  CAS  Google Scholar 

  3. Shuke W, Radka S, Jeffrey CM, Kai B, Uwe TB (2020) Angew Chem Int Ed 59:2–34

    Article  Google Scholar 

  4. Pavel RN (2003) Curr Opin Drug Disc Dev 6:902–920

    Google Scholar 

  5. Faber K, Riva S (1992) J Synth Org Chem 10:895–910

    Google Scholar 

  6. Zhu B, Panek JS (2000) Org Lett 2(17):2575–2578

    Article  CAS  Google Scholar 

  7. Maugard T, Tudella J, Legoy D (2000) Biotechnol Prog 16:358–362

    Article  CAS  Google Scholar 

  8. Maugard T, Legoy MD (2000) J Mol Catal B 8:275–280

    Article  CAS  Google Scholar 

  9. Mcconnell O, Bach A, Balibar C, Byrne N, Cai Y, Carter G, Chlenov M, Di L, Fan K, Goljer I, He Y, Herold D, Kagan M, Kerns E, Koehn F, Kraml C, Marathias V, Marquez B, Mcdonald L, Nogle L, Petucci C, Schlingmann G, Tawa G, Tischler M, Williamson RT, Sutherland A, Watts W, Young MD, Zhang MY, Zhang Y, Zhou D, Ho D (2007) Chirality 19:658–682

    Article  CAS  Google Scholar 

  10. Klibanov AM (1986) ChemTech 16:354–359

    CAS  Google Scholar 

  11. Klibanov AM (1986) J Am Chem Soc 108:2767–2768

    Article  Google Scholar 

  12. Kirchner G, Scollar MP, Klibanov AM (1985) J Am Chem Soc 107:7072–7076

    Article  CAS  Google Scholar 

  13. Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. In: Baldwin GE, Magnus PD (eds) Tetrahedron organic chemistry series. Pergamon Press, London

    Google Scholar 

  14. Faber K (2011) Biotransformations in organic chemistry, 6th edn. Springer, Berlin

    Book  Google Scholar 

  15. Amanda GAS, Alessandra CM, Pedro HA, de Debora O (2017) Trends Food Sci Technol 69:95–105

    Article  Google Scholar 

  16. Idris A, Bukhari A (2012) Biotechnol Adv 30:550–563

    Article  CAS  Google Scholar 

  17. Faber K, Riva R (1992) J Synth Org Chem 15:895–910

    Google Scholar 

  18. Merabet-Khelassi M, Houiene Z, Aribi-Zouioueche L, Riant O (2012) Tetrahedron 23:828–833

    Article  CAS  Google Scholar 

  19. Houiene Z, Merabet-Khelassi M, Bouzemi N, Aribi-Zouioueche L, Riant O (2013) Tetrahedron 24:290–296

    Article  CAS  Google Scholar 

  20. Alalla A, Merabet-Khelassi M, Riant O, Aribi-Zouioueche L (2016) Tetrahedron 27:1253–1259

    Article  CAS  Google Scholar 

  21. Belkacemi FZ, Merabet-Khelassi M, Aribi- Zouioueche L, Riant O (2018) Res Chem Intermed 44:6847–6860

    Article  CAS  Google Scholar 

  22. Arthur LBD, Philipe DS (2018) J CO2 Utiliz 23:159–178

    Article  Google Scholar 

  23. Cheng L, Jingcan S, Caili F, Bin Y, Shao QL, Tianhu L, Dejian H (2014) Food Chem 145:796–801

    Article  Google Scholar 

  24. Kagan HB, Fiaud JC (1988) N Y Kinet Resolut Top Stereochem 18:249–330

    CAS  Google Scholar 

  25. Hayashi T, Matsumoto Y (1991) Tetrahedron 2:601–612

    Article  CAS  Google Scholar 

  26. Naemura K, Murata M, Tanaka R, Yano M, Hirose K, Tobe Y (1996) Tetrahedron 7:1581–1584

    Article  CAS  Google Scholar 

  27. Naemura K, Murata M, Tanaka R, Yano M, Hirose K, Tobe Y (1996) Tetrahedron 7:3285–3294

    Article  CAS  Google Scholar 

  28. Kazlauskas RJ, Weissfloch AN, Rappaport AT, Cuccia LA (1991) J Org Chem 56:2656–2665

    Article  CAS  Google Scholar 

  29. Goto M, Kawasaki M, Kometani T (2000) J Mol Catal B: Enzym 9(4–6):245–250

    Article  CAS  Google Scholar 

  30. Melais N, Aribi-Zouioueche L, Riant O (2016) C R Chim 19:971–977

    Article  CAS  Google Scholar 

  31. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  32. Anastas PT, Li PT (2010) Chem Soc Rev 39(1):301–312

    Article  CAS  Google Scholar 

  33. Trost BM (1995) Angew Chem Int Ed 107:285–307

    Article  Google Scholar 

  34. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Sustain Chem Process 4(7):1–24

    Google Scholar 

  35. Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ (2015) Green Chem 18(1):288–296

    Article  Google Scholar 

  36. Blasco MA, Gröger H (2014) Bioorg Med Chem 22(20):5539–5546

    Article  Google Scholar 

  37. Rakels JLL, Straathof AJJ, Heijneii JJ (1994) Tetrahedron 5:93–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Algerian Ministry of Higher Education and Scientific Research (MESRS, FNR 2000) are gratefully acknowledged for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saoussen Zeror.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3805 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razi, S., Zeror, S., Merabet-Khelassi, M. et al. Two Approaches for CAL-B-Catalyzed Enantioselective Deacylation of a Set of α-Phenyl Ethyl Esters: Organic Solvent with Sodium Carbonate and Micro-aqueous Medium. Catal Lett 151, 2603–2611 (2021). https://doi.org/10.1007/s10562-020-03525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03525-0

Keywords

Navigation