Skip to main content
Log in

Molybdenum Carbonyl Grafted on Amine-Functionalized MCM-22 as Potential Catalyst for Iso-Eugenol Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Different concentrations of molybdenum carbonyl were incorporated on the surface of amine-functionalized MCM-22. The obtained samples were thoroughly characterized by Fourier-transform infrared spectroscopy (FTIR), powder X-Ray diffraction (XRD), high-resolution transition electron microscopy (HRTEM), N2-sorption and thermo-gravimetric analysis (TGA) methods. HRTEM images confirmed the uniform distribution of active molybdenum species on the functionalized MCM-22. The resultant materials were explored for liquid-phase oxidation of iso-eugenol at ambient reaction conditions. The catalyst with 6 wt% Mo(CO)6 loaded materials showed comparable conversion (87%) with vanillin as the major product (selectivity of 61%) for the chosen reaction. The better catalytic activity of MCM-22-DA-Mo catalyst having 6 wt% loading of Mo carbonyl could be due to the uniform distribution of molybdenum species on MCM-22-DA surface. Importantly, the catalyst retained its activity even after several runs.

Graphic Abstract

Molybdenum carbonyl were incorporated on the surface of amine-functionalized MCM-22 by the post-synthesis method. The resultant MCM-22-DA-Mo showed promising activity on iso-eugenol oxidation with a conversion of 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robertson A (1975) Platin Met Rev 19:64–69

    CAS  Google Scholar 

  2. Davis BH (2008) Handbook of Heterogeneous Catalysis: Online 16-37

  3. Ali M, Rahman M, Sarkar SM, Hamid SB (2014) J Nanomater 2014

  4. Centi G, Perathoner S (2003) Catal Today 77:287–297

    Article  CAS  Google Scholar 

  5. Li Y, Li L, Yu J (2017) Chem 3:928–949

    Article  CAS  Google Scholar 

  6. Moliner M (2012) ISRN mater sci 2012

  7. Weitkamp J (2000) Solid State Ion 131:175–188

    Article  CAS  Google Scholar 

  8. Rubin MK, Chu P (1990) U S Pat 4(954):325

    Google Scholar 

  9. Sahu P, Eniyarppu S, Ahmed M, Sharma D, Sakthivel A (2018) J Porous Mater 25:999–1005

    Article  CAS  Google Scholar 

  10. Wang S, Chen Y, Wei Z, Qin Z, Ma H, Dong M, Li J, Fan W, Wang J (2015) ACS Catal 5:1131–1144

    Article  CAS  Google Scholar 

  11. Wu P, Komatsu T, Yashima T (1998) Microporous Mesoporous Mater 22:343–356

    Article  CAS  Google Scholar 

  12. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) Science 264:1910–1913

    Article  CAS  Google Scholar 

  13. Bellussi G, Carati A, Rizzo C, Millini R (2013) Catal Sci Technol 3:833–857

    Article  CAS  Google Scholar 

  14. Rutkowska M, Díaz U, Palomares AE, Chmielarz L (2015) Appl Catal B: Environ 168:531–539

    Article  Google Scholar 

  15. Sakthivel A, Baskaran T (2016) Adv Porous Mater 4:206–211

    Article  Google Scholar 

  16. Bezerra DP, da Silva FW, de Moura PA, Sousa AG, Vieira RS, Rodriguez-Castellon E, Azevedo DC (2014) Appl Surf Sci 314:314–321

    Article  CAS  Google Scholar 

  17. Palai YN, Anjali K, Sakthivel A, Ahmed M, Sharma D, Badamali SK (2018) Catal Lett 148:465–473

    Article  CAS  Google Scholar 

  18. Yadav R, Baskaran T, Anjali K, Ahmed M, Bhosale SV, Joseph S, Al-Muhtaseb AA, Singh G, Sakthivel A, Vinu A (2020) Recent advances in the preparation and applications of organo-functionalized porous materials. Chem Asian J 15:2588–2621

    Article  CAS  Google Scholar 

  19. Srinivas D, Sivasanker S (2003) Catal Surv Asia 7:121–132

    Article  CAS  Google Scholar 

  20. Sakthivel A, Zhao J, Hanzlik M, Chiang AS, Herrmann WA, Kühn FE (2005) Adv Synth Catal 347:473–483

    Article  CAS  Google Scholar 

  21. Sakthivel A, Mahato NR, Baskaran T, Christopher J (2015) Catal Commun 65:55–61

    Article  CAS  Google Scholar 

  22. Sakthivel A, Zhao J, Kuhn FE (2005) Catal Lett 102:115–119

    Article  CAS  Google Scholar 

  23. Baskaran T, Kumaravel R, Christopher J, Ajithkumar TG, Sakthivel A (2015) New J Chem 39:3758–3764

    Article  CAS  Google Scholar 

  24. Laniecki M, Zmierczak W (1991) Zeolites 11:18–26

    Article  CAS  Google Scholar 

  25. Sobalık Z, Tvaruzkova Z, Wichterlova B, Fıla V, Spatenka S (2003) Appl Catal A: Gen 253:271–282

    Article  Google Scholar 

  26. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Chem Soc Rev 43:3480–3524

    Article  CAS  Google Scholar 

  27. Diamantidis ND, Koukios EG (2000) Ind Crops Prod 11:97–106

    Article  Google Scholar 

  28. Brochado AR, Matos C, Moller BL, Hansen J, Mortensen UH, Patil KR (2010) Microb Cell Fact 9:84

    Article  Google Scholar 

  29. Ramachandra Rao S, Ravishankar GA (2000) J Sci Food Agric 80:289–304

    Article  Google Scholar 

  30. Yepez R, García S, Schachat P, Sanchez-Sanchez M, González-Estefan JH, González-Zamora E, Ibarra IA (2015) Aguilar-PliegoJ. New J Chem 39:5112–5115

    Article  CAS  Google Scholar 

  31. Hopp R (1993) Recent developments in flavour and fragrance chemistry. VCH Publishers, Weinheim, Germany, p 14

    Google Scholar 

  32. Mathias AL, Lopretti MI, Rodrigues AE (1995) J Chem Technol Biot 64:225–234

    Article  CAS  Google Scholar 

  33. Franco A, De S, Balu AM, Garcia A, Luque R (2017) Beilstein J Org Chem 13:1439–1445

    Article  CAS  Google Scholar 

  34. Ramachandra Rao S, Ravishankar G, Venkataraman L (1996) Indian Pat 1022

  35. Jasra RV, Das J, Unnikrishnan A, Sakthivel A (2012) U S Pat WO 2012/070067 A2

  36. Sugimoto H, Harihara M, Shiro M, Sugimoto K, Tanaka K, Miyake H, Tsukube H (2005) Inorg. Chem. 44:6386–6392

    Article  CAS  Google Scholar 

  37. Gomes AC, Bruno AC, Gago SM, Lopes S, Machado RP, Carminatti DA, Valente AP, Pillinger AA, Gonçalves M, IS (2011) J. Organomet. Chem. 696:3543

    Article  CAS  Google Scholar 

  38. Jia M, Seifert A, Thiel WR (2003) Chem. Mater. 15:2174

    Article  CAS  Google Scholar 

  39. Zhao J, Sakthivel A, Santos AM, Kuhn FE (2005) Inorg. Chim. Acta. 358:4201

    Article  CAS  Google Scholar 

  40. Molybdenum based Cyclopentadienyl Carbonyl Complexes as Precursors for Epoxidation Catalysts by Sakthivel A, Sathiyendiran M (2014) In: Viswanathan S Saji, Sergey I Lopatin (ed) Molybdenum and its compounds: applications, electrochemical properties and geological implications. Nova Science Publishers; ISBN: 978-1-63321-213-8, pp 107–122

  41. Julian I, Hueso JL, Lara N, Solé-Daurá A, Poblet JM, Mitchell SG, Mallada R, Santamaria J (2019) Catal. Sci Technol 9:5927–5942

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks DST-SERB-CRG (Project No: CRG/2019/004624) for financial support. Preeti and Sreenavya are grateful to Central University of Kerala for the fellowship and Lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyamperumal Sakthivel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Tincy, A., Sreenavya, A. et al. Molybdenum Carbonyl Grafted on Amine-Functionalized MCM-22 as Potential Catalyst for Iso-Eugenol Oxidation. Catal Lett 151, 1336–1349 (2021). https://doi.org/10.1007/s10562-020-03388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03388-5

Keywords

Navigation