Skip to main content
Log in

Morphology-Controlled Fabrication of Co3O4 Catalysts and Performance Towards Low Temperature CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This article reports the heterogeneous catalysis of CO oxidation over nanostructured Co3O4 at low temperatures. The hydrothermal method was deftly exploited to fabricate nanostructured Co3O4 with three kinds of precipitants (i.e., urea, hexamethylene tetramine, and sodium hydroxide), which were thoroughly characterized with XRD, BET, TEM/SEM, HR-TEM, H2-TPR, and XPS to understanding the correlation between the morphology of Co3O4 and the corresponding catalytic performance. Specifically, the straw-like nanorods, flower-like nanosheets, and honeycomb-like nanoparticles of Co3O4 could be controlled with the choice precipitants. Our comprehensive analysis indicated that the straw-like Co3O4 nanorods possessed preferential performance for CO catalytic oxidation among these nanostructured Co3O4 to produce CO2. In addition, the results showed good long-term stability for practical application over the straw-like Co3O4 nanorods and showed no significant decay (the activity maintained 97% conversion) within 50 h at 125 °C. The novel insights of low-temperature CO oxidation on nanostructured Co3O4 from this work could hold promise for the development of new strategies and design principles for manufacturing highly active and stable catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schryer DR, Upchurch BT, Sidney BD, Brown KG, Hoflund GB, Herz RK (1991) J Catal 130:314

    CAS  Google Scholar 

  2. Medrano JA, Garofalo A, Donato L, Basile F, De Santo MP, Gallucci F, Cofone F, Ciuchi F, Algieri C (2018) Chem Eng J 351:40

    CAS  Google Scholar 

  3. Mei D, Gao F, Szanyi J, Wang Y (2019) Appl Catal A 569:181

    CAS  Google Scholar 

  4. Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Shubin YV, Plyusnin PE, Mishakov IV (2017) Catal Commun 97:18

    CAS  Google Scholar 

  5. Chomboon T, Kumsung W, Chareonpanich M, Senkan S, Seubsai A (2019) Catalysts 9:335

    Google Scholar 

  6. Tissot H, Weng X, Schlexer P, Pacchioni G, Shaikhutdinov S, Freund HJ (2018) Surf Sci 678:118

    CAS  Google Scholar 

  7. Schlexer P, Pacchioni G, Włodarczyk R, Sauer J (2016) Surf Sci 648:2

    CAS  Google Scholar 

  8. Guan Y, Liu F, Wang B, Yang X, Liang X, Suo H, Sun P, Sun Y, Ma J (2017) Sens Actuators B 239:696

    CAS  Google Scholar 

  9. Peng G, Gramm F, Ludwig C, Vogel F (2015) Catal Sci Technol 5:3658

    CAS  Google Scholar 

  10. Jansson J (2000) J Catal 194:55

    CAS  Google Scholar 

  11. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387

    CAS  Google Scholar 

  12. Lin HK, Chiu HC, Tsai HC, Chien SH, Wang CB (2003) Catal Lett 88:169

    CAS  Google Scholar 

  13. Wang CB, Tang CW, Gau SJ, Chien SH (2005) Catal Lett 101:59

    CAS  Google Scholar 

  14. Qiao NN, Nong YL, Liu N, Liang Y (2019) Mater Chem Phys 225:458

    CAS  Google Scholar 

  15. Zhu H, Li Y, Jiang X (2019) J Alloys Compd 772:447

    CAS  Google Scholar 

  16. Guan R, Yuan X, Wu Z, Jiang L, Zhang J, Li Y, Zeng G, Mo D (2019) Sep Purif Technol 212:223

    CAS  Google Scholar 

  17. Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E (2018) Nano-Struct Nano-Obj 14:19

    CAS  Google Scholar 

  18. Zheng M, Ding Y, Cao X, Tian T, Lin J (2018) Appl Catal B 237:1091

    CAS  Google Scholar 

  19. Saltarelli M, De Faria EH, Ciuffi KJ, Nassar EJ, Trujillano R, Rives V, Vicente MA (2019) Mol Catal 462:114

    CAS  Google Scholar 

  20. Duchet JC, Tilliette MJ, Cornet D, Vivier L, Perot G, Bekakra L, Moreau C, Szabo G (1991) Catal Today 10:579

    CAS  Google Scholar 

  21. Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal 146:255

    CAS  Google Scholar 

  22. Mergler YJ, Hoebink J, Nieuwenhuys BE (1997) J Catal 167:305

    CAS  Google Scholar 

  23. Garbowski E, Guenin M, Marion MC, Primet M (1990) Appl Catal 64:209

    CAS  Google Scholar 

  24. Sinha ASK, Shankar V (1993) Chem Eng J 52:115

    CAS  Google Scholar 

  25. Luo MF, Zhong YJ, Yuan XX, Zheng XM (1997) Appl Catal A 162:121

    CAS  Google Scholar 

  26. Törncrona A, Skoglundh M, Thormählen P, Fridell E, Jobson E (1997) Appl Catal B 14:131

    Google Scholar 

  27. Pietrogiacomi D, Tuti S, Campa MC, Indovina V (2000) Appl Catal B 28:43

    CAS  Google Scholar 

  28. Yamaura H, Moriya K, Miura N, Yamazoe N (2000) Sens Actuators B 65:39

    CAS  Google Scholar 

  29. Gulari E, Güldür C, Srivannavit S, Osuwan S (1999) Appl Catal A 182:147

    CAS  Google Scholar 

  30. Antolini E, Zhecheva E (1998) Matter Lett 35:380

    CAS  Google Scholar 

  31. Boyle TJ, Ingersoll D, Alam TM, Tafoya CJ, Rodriguez MA, Vanheusden K, Doughty DH (1998) Chem Mater 10:2270

    CAS  Google Scholar 

  32. Kang M, Song MW, Lee CH (2003) Appl Catal A 251:143

    CAS  Google Scholar 

  33. Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B 46:473

    CAS  Google Scholar 

  34. Tang CW, Kuo CC, Kuo MC, Wang CB, Chien SH (2006) Appl Catal A 309:37

    CAS  Google Scholar 

  35. Zhou M, Cai L, Bajdich M, García-Melchor M, Li H, He J, Wilcox J, Wu W, Vojvodic A, Zheng X (2015) ACS Catal 5:4485

    CAS  Google Scholar 

  36. Lai TL, Lai YL, Lee CC, Shu YY, Wang CB (2008) Catal Today 131:105

    CAS  Google Scholar 

  37. Ghosh K, Balog ERM, Sista P, Williams DJ, Kelly D, Martinez JS, Rocha RC (2014) APL Mater 2:021101

    Google Scholar 

  38. Wang F, Zhang L, Xu L, Deng Z, Shi W (2017) Fuel 203:419

    CAS  Google Scholar 

  39. Yin C, Liu Y, Xia Q, Kang S, Li X, Wang Y, Cui L (2019) J Colloid Interface Sci 553:427

    CAS  PubMed  Google Scholar 

  40. Zhou X, Liu Z, Wang Y, Ding Y (2018) Appl Catal B 237:74

    CAS  Google Scholar 

  41. Hitkari G, Sandhya S, Gajanan P, Shrivash M, Deepak K (2018) J Mater Sci Eng 7:419

    Google Scholar 

  42. Prabaharan DDM, Sadaiyandi K, Mahendran M, Sagadevan S (2017) Appl Phys A 123:264

    Google Scholar 

  43. Itteboina R, Sau TK (2019) Mater Today 9:458

    CAS  Google Scholar 

  44. Chen C, Wang B, Liu H, Chen T, Zhang H, Qiao J (2019) Appl Surf Sci 471:289

    CAS  Google Scholar 

  45. Abbas TAH, Slewa LH, Khizir HA, Kakil SA (2017) J Mater Sci 28:1951

    CAS  Google Scholar 

  46. Al-Qirby LM, Radiman S, Siong CW, Ali AM (2017) Ultrason Sonochem 38:640

    CAS  PubMed  Google Scholar 

  47. Hosseyni Sadr M, Morsali A, Hojaghani Sh (2013) J Nanostruct 3:109

    Google Scholar 

  48. Li HJ, Zheng L, Zhao TQ, Xu XF (2018) J Fuel Chem Technol 46:717

    CAS  Google Scholar 

  49. Upasen S, Nongpromma T, Trikamol S (2017) Int Pro Chem Biol Environ Eng 101:84

    CAS  Google Scholar 

  50. Wang Y, Hu X, Zheng K, Zhang H, Zhao Y (2018) Reac Kinet Mech Catal 123:707

    CAS  Google Scholar 

  51. Fan Z, Zhang Z, Fang W, Yao X, Zou G, Shangguan W (2016) Chin J Catal 37:947

    CAS  Google Scholar 

  52. Zhao Y, Xu X, Zhao Y, Zhou H, Li J, Jin H (2016) J Alloys Compd 654:523

    CAS  Google Scholar 

  53. Lee CS, Dai Z, Jeong SY, Kwak CH, Kim BY, Kim DH, Jang HW, Park JS, Lee JH (2016) Chem Eur J 22:7102

    CAS  PubMed  Google Scholar 

  54. Hu L, Peng Q, Li Y (2008) J Am Chem Soc 130:16136

    CAS  PubMed  Google Scholar 

  55. Choi HM, Lee SJ, Moon SH, Phan TN, Jeon SG, Ko CH (2016) Catal Commun 82:50

    CAS  Google Scholar 

  56. Bai B, Arandiyan H, Li J (2013) Appl Catal B 142:677

    Google Scholar 

  57. Xie X, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Nature 458:746

    CAS  PubMed  Google Scholar 

  58. Zhang L, Li H, Li K, Li L, Wei J, Feng L, Fu Q (2016) J Alloys Compd 680:146

    CAS  Google Scholar 

  59. Hu L, Sun K, Peng Q, Xu B, Li Y (2010) Nano Res 3:363

    CAS  Google Scholar 

  60. Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu G, Hao Z, Qiao S (2010) J Amer Chem Soc 132:2608

    CAS  Google Scholar 

  61. Zeng L, Li K, Huang F, Zhu X, Li H (2016) Chin J Catal 37:908

    CAS  Google Scholar 

  62. Zhang Z, Geng H, Zheng L, Du B (2005) J Alloys Compd 392:317

    CAS  Google Scholar 

  63. Mo S, Li S, Li J, Deng Y, Peng S, Chen J, Chen Y (2016) Nanoscale 8:15763

    CAS  PubMed  Google Scholar 

  64. Tang W, Xiao W, Wang S, Ren Z, Ding J, Gao PX (2018) Appl Catal B 226:585

    CAS  Google Scholar 

  65. Schenck CV, Dillard JG, Murray JW (1983) J Colloid Interface Sci 95:398

    CAS  Google Scholar 

  66. Chen J, Zhang Y, Tan L, Zhang Y (2011) Ind Eng Chem Res 50:4212

    CAS  Google Scholar 

  67. Mo S, Zhang Q, Sun Y, Zhang M, Li J, Ren Q, Fu M, Wu J, Chen L, Ye D (2019) J Mater Chem A 7:16197

    CAS  Google Scholar 

  68. Armelao L, Bettinelli M, Bottaro G, Barreca D, Tondello E (2001) Surf Sci Spectra 8:24

    CAS  Google Scholar 

  69. Saitoh T, Mizokawa T, Fujimori A, Takeda Y, Takano M (1999) Surf Sci Spectra 6:302

    CAS  Google Scholar 

  70. Seim H, Nieminen M, Niinistö L, Fjellvåg H, Johansson LS (1997) Appl Surf Sci 112:243

    CAS  Google Scholar 

  71. Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y (2015) J Mol Catal A 398:79

    CAS  Google Scholar 

  72. Sun X, You R, Hu X, Mo J, Xiong R, Ji H, Li X, Cai S, Zheng C, Meng M (2015) RSC Adv 5:35524

    CAS  Google Scholar 

  73. Bai B, Li J (2014) ACS Catal 4:2753

    CAS  Google Scholar 

  74. Wang K, Cao Y, Hu J, Li Y, Xie J, Jia D (2017) ACS Appl Mater Interfaces 9:16128

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This financial support of this work by the Ministry of Science and Technology (MOST 107-2113-M-606-001-), Taiwan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Chia Wang or Chen-Bin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, RC., Tang, CW., Chang, MB. et al. Morphology-Controlled Fabrication of Co3O4 Catalysts and Performance Towards Low Temperature CO Oxidation. Catal Lett 150, 3523–3532 (2020). https://doi.org/10.1007/s10562-020-03249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03249-1

Keywords

Navigation