Skip to main content
Log in

Palladium-Alumoxane Framework as a Novel and Reusable Nanocatalyst for Suzuki–Miyaura, Stille and Heck Cross Coupling Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein for the first time, a Schiff base alumoxane-supported palladium (SBA-Pd°) were successfully synthesized and reported as a new mesoporous nanocatalyst for C–C cross coupling reactions. The SBA-Pd° nanocatalyst could be dispersed in poly(ethylene glycol) and showed excellent catalytic activity for Suzuki–Miyaura, Stille and Heck coupling reactions. In addition, the nanocatalyst could be recovered and reused several times without significant loss of its catalytic activity. Pd leaching from SBA-Pd° is very negligible for this coupling reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Suzuki A (2003) Modern arene chemistry, Ch. 3. Astruc D (ed) Wiley-VCH, Weinheim

  2. Miyaura N, Suzuki A (1995) Chem Rev 95:2457

    Article  CAS  Google Scholar 

  3. Suzuki A (1999) J Organomet Chem 576:147

    Article  CAS  Google Scholar 

  4. Baudoin O, Cesario M, Guenard D, Gueritte F (2002) J Org Chem 67:1199

    Article  CAS  Google Scholar 

  5. Hassan J, Se’vignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359

    Article  CAS  Google Scholar 

  6. Walker JA, Murry JA, Soheili A, Ceglia S, Springfield SA, Bazaral C, Dormer PG, Hughes DL (2005) Tetrahedron 61:6330

    Article  Google Scholar 

  7. Kertesz M, Choi CH, Yang S (2005) Chem Rev 105:3448

    Article  CAS  Google Scholar 

  8. Baleizao C, Corma A, Garcia H, Leyva A (2004) J Org Chem 69:439

    Article  CAS  Google Scholar 

  9. Wolfe JP, Singer RA, Yang BH, Buchwald SL (2000) J Am Chem Soc 122:4020

    Article  Google Scholar 

  10. Wolfe JP, Buchwald SL (1999) Angew Chem Int Ed 38:2413

    Article  CAS  Google Scholar 

  11. Grasa GA, Hillier AC, Nolan SP (2001) Org Lett 3:1077

    Article  CAS  Google Scholar 

  12. Martin R, Buchwald SL (2008) Acc Chem Res 41:1461–1473

    Article  CAS  Google Scholar 

  13. Karimi B, Fadavi Akhavan P (2011) Chem Commun 47:7686

    Article  CAS  Google Scholar 

  14. Rostamnia S, Xin H (2013) Appl Organomet Chem 27:348

    Article  CAS  Google Scholar 

  15. Zhang R, Ding W, Tu B, Zhao D (2007) Chem Mater 19:4379

    Article  CAS  Google Scholar 

  16. Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Chem Mater 16:3714

    Article  CAS  Google Scholar 

  17. Wu CD, Hu A, Zhang L, Lin WB (2005) J Am Chem Soc 127:8940

    Article  CAS  Google Scholar 

  18. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507

    Article  CAS  Google Scholar 

  19. Castillejos E, Debouttiere PJ, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529

    Article  CAS  Google Scholar 

  20. Bai L, Wang JX (2008) Adv Synth Catal 350:315

    Article  CAS  Google Scholar 

  21. Ghorbani-Vaghei R, Hemmati S, Veisi H (2014) J Mol Catal A Chem 393:240–247

    Article  CAS  Google Scholar 

  22. Derakhshan AA, Rajabi L, Karimnezhad H (2012) Powder Technol 225:156

    Article  CAS  Google Scholar 

  23. Surivet F, Lam TM, Pascualt JP, Mai C (1992) Macromolecules 25:5742

    Article  CAS  Google Scholar 

  24. Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312

    Article  CAS  Google Scholar 

  25. Rajabi L, Derakhshan AA (2010) Sci Adv Mater 2:163

    Article  CAS  Google Scholar 

  26. Liu J, Liao X, Shi B (2014) Res Chem Intermed 40:249

    Article  CAS  Google Scholar 

  27. Rajabi L, Derakhshan AA (2012) Powder Technol 226:117

    Article  Google Scholar 

  28. Obrey SJ, Barron AR (2002) Macromolecules 35:1499

    Article  CAS  Google Scholar 

  29. Tobisu M, Xu T, Shimasaki T, Chatani N (2011) J Am Chem Soc 133:19505

    Article  CAS  Google Scholar 

  30. Li JH, Liang Y, Xie YY (2005) Tetrahedron 61:7289

    Article  CAS  Google Scholar 

  31. Kantam ML, Srinivas P, Yadav J, Likhar PR, Bhargava S (2009) J Org Chem 74:4882

    Article  CAS  Google Scholar 

  32. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P (2016) Appl Organometal Chem 30:422

    Article  CAS  Google Scholar 

  33. Leng Y, Liu J, Zhang C, Jiang P (2014) Catal Sci Technol 4:997

    Article  CAS  Google Scholar 

  34. Landry CC, Pappe N, Mason MR, Apblett AW, Tyler AN, Maclnnes AN, Barron AR (1995) J Mater Chem 5(2):331

    Article  CAS  Google Scholar 

  35. Abdel-Latif SA, Hassib HB, YM Issa (2007) Spectrochim Acta A 67:950

    Article  CAS  Google Scholar 

  36. Peng YY, Liu J, Lei X, Yin Z (2010) Green Chem 12:1072

    Article  CAS  Google Scholar 

  37. Ghorbani-Choghamarani A, Norouzi M (2016) Appl Organometal Chem 30:140

    Article  CAS  Google Scholar 

  38. Bai L, Wang JX (2007) Adv Synth Catal 350:315

    Article  Google Scholar 

  39. Binns EH, Squire KH (1962) Trans Faraday Soc 58:762

    Article  CAS  Google Scholar 

  40. Choi KH, Shokouhimehr M, Sung YE (2013) Bull Korean Chem Soc 34(5):1477

    Article  CAS  Google Scholar 

  41. Mubofu EB, Clark JH, Macquarrie DJ (2001) Green Chem 3:23

    Article  CAS  Google Scholar 

  42. Shimizu KI, Kan-no T, Kodama T, Hagiwara H, Kitayama Y (2002) Tetrahedron Lett 43:5653

    Article  CAS  Google Scholar 

  43. Navidi M, Rezaei N, Movassagh B (2013) J Organomet Chem 743:63

    Article  CAS  Google Scholar 

  44. Kabalka GW, Pagni RM, Hair CM (1999) Org Lett 1:1423

    Article  CAS  Google Scholar 

  45. Rostamnia S, Lamei K, Pourhassan F (2015) RSC Adv 5:1033

    Article  CAS  Google Scholar 

  46. Kim N, Kwon MS, Park CM, Park J (2004) Tetrahedron Lett 45:7057

    Article  CAS  Google Scholar 

  47. Mori K, Yamaguchi K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2002) J Am Chem Soc 124:11572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Ilam University and Iran National Science Foundation (INSF) for financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ghorbani-Choghamarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani-Choghamarani, A., Derakhshan, A.A., Hajjami, M. et al. Palladium-Alumoxane Framework as a Novel and Reusable Nanocatalyst for Suzuki–Miyaura, Stille and Heck Cross Coupling Reactions. Catal Lett 147, 110–127 (2017). https://doi.org/10.1007/s10562-016-1904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1904-5

Keywords

Navigation