Skip to main content
Log in

Pd nanoparticles immobilized on boehmite by using tannic acid as structure-directing agent and stabilizer: a high performance catalyst for hydrogenation of olefins

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Boehmite-supported Pd nanoparticles (Pd–TA–boehmite) were successfully synthesized by a hydrothermal method using tannic acid as the structure-directing agent as well as stabilizer. The physicochemical properties of the Pd–TA–boehmite catalyst were well characterized by XPS, XRD, N2 adsorption/desorption, and TEM analyses. Catalytic hydrogenation of olefins was used as the probe reaction to evaluate the activity of the Pd–TA–boehmite catalyst. For comparison, the Pd–boehmite catalyst prepared without tannic acid was also employed for olefin hydrogenation. For all the investigated substrates, the Pd–TA–boehmite catalyst exhibited superior catalytic performance than the Pd–boehmite catalyst. For the example of hydrogenation of allyl alcohol, the initial hydrogenation rate and selectivity of the Pd–TA–boehmite catalyst were 23,520 mol/mol h and 99 %, respectively, while those of the Pd–boehmite catalyst were only 14,186 mol/mol h and 93 %, respectively. Additionally, the hydrogenation rate of the Pd–TA–boehmite catalyst could still reach 20,791 mol/mol h at the 7th cycle, which was much higher than that of the Pd–boehmite catalyst (5,250 mol/mol h) at the 4th cycle, thus showing an improved reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.N. Ramachandra Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Soc. Rev. 29, 27 (2000)

    Article  Google Scholar 

  2. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2008)

    Article  Google Scholar 

  3. A.R. Tao, S. Habas, P. Yang, Small 4, 310 (2008)

    Article  CAS  Google Scholar 

  4. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 429, 281 (2004)

    Article  CAS  Google Scholar 

  5. R. Chauhan, A. Kumar, R.P. Chaudhary, Res. Chem. Intermed. 38, 1443 (2012)

    Article  CAS  Google Scholar 

  6. A. Kumar, S. Mandal, P.R. Selvakannan, R. Pasricha, A.B. Mandale, M. Sastry, Langmuir 19, 6277 (2003)

    Article  CAS  Google Scholar 

  7. J.S. Zheng, X.S. Zhang, P. Li, J. Zhu, X.G. Zhou, W.K. Yuan, Electrochem. Commun. 9, 895 (2007)

    Article  CAS  Google Scholar 

  8. Y.R. Uhm, H.M. Lee, F. Olga, O. Irina, V. Marina, R. Gennady, C. Valery, C.K. Rhee, Res. Chem. Intermed. 36, 867 (2010)

    Article  CAS  Google Scholar 

  9. J. Zhu, Z. Konya, V.F. Puntes, I. Kiricsi, C.X. Miao, J.W. Ager, A.P. Alivisatos, G.A. Somorjai, Langmuir 19, 4396 (2003)

    Article  CAS  Google Scholar 

  10. J.S. Chang, J.S. Hwang, S.E. Park, Res. Chem. Intermed. 29, 921 (2003)

    Article  CAS  Google Scholar 

  11. E. Ruckenstein, Z.F. Li, Adv. Colloid Interface Sci. 113, 43 (2005)

    Article  CAS  Google Scholar 

  12. L.C. de Santa Maria, A.L.C. Santos, P.C. Oliveira, H.S. Barud, Y. Messaddeq, S.J.L. Ribeiro, Res. Chem. Intermed. 63, 797 (2009)

    Google Scholar 

  13. J.H. He, T. Kunitake, A. Nakao, Chem. Mater. 15, 4401 (2003)

    Article  CAS  Google Scholar 

  14. Y. Zhou, W.X. Chen, H. Itoh, K. Naka, Q.Q. Ni, H. Yamane, Y. Chujo, Chem. Commun. 23, 2518 (2001)

    Article  Google Scholar 

  15. X. Huang, H. Mao, X.P. Liao, B. Shi, Catal. Commun. 12, 1000 (2011)

    Article  CAS  Google Scholar 

  16. H. Wu, X. Huang, M.M. Gao, X.P. Liao, B. Shi, Green Chem. 13, 651 (2011)

    Article  CAS  Google Scholar 

  17. T.B. He, L. Xiang, S.L. Zhu, Langmuir 24, 8284 (2008)

    Article  CAS  Google Scholar 

  18. H.Y. Zhu, J.D. Riches, J.C. Barry, Chem. Mater. 14, 2086 (2002)

    Article  CAS  Google Scholar 

  19. Y. Mathieu, B. Lebeau, V. Valtchev, Langmuir 23, 9435 (2007)

    Article  CAS  Google Scholar 

  20. G. Vázquez, J. González-Álvarez, F. López-Suevos, G. Antorrena, Bioresour. Technol. 87, 349 (2003)

    Article  Google Scholar 

  21. P. Kacer, L. Late, M. Kuzma, L. Cerveny, J. Mol. Catal. A. 159, 365 (2000)

    Article  CAS  Google Scholar 

  22. J.A. Rotole, P.M.A. Sherwood, Surf. Sci. Spectra 5, 53 (1998)

    Article  CAS  Google Scholar 

  23. R. Flamia, G. Lanza, A.M. Salvi, J.E. Castle, A.M. Tamburro, Biomacromolecules 6, 1299 (2005)

    Article  CAS  Google Scholar 

  24. R. Lapuente, C. Quijada, F. Huerta, F. Cases, J.L. Vazquez, Polym. J. 35, 911 (2003)

    Article  CAS  Google Scholar 

  25. C. Evangelisti, N. Panziera, P. Pertici, G. Vitulli, P. Salvadori, C. Battocchio, G. Polzonetti, J. Catal. 10, 287 (2009)

    Article  Google Scholar 

  26. X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzmán-Castillo, F. Hernández-Beltrán, J. Solid State Chem. 161, 319 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports provided by the National Natural Science Foundation of China (21,176,161) and National High Technology R&D Program (2011AA06A108). We also give thanks to Test Center of Sichuan University for the help of TEM tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuepin Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Liao, X. & Shi, B. Pd nanoparticles immobilized on boehmite by using tannic acid as structure-directing agent and stabilizer: a high performance catalyst for hydrogenation of olefins. Res Chem Intermed 40, 249–258 (2014). https://doi.org/10.1007/s11164-012-0959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0959-1

Keywords

Navigation