Skip to main content
Log in

Structure–Activity Relationships of Hierarchical Meso–Macroporous Alumina Supported Copper Catalysts for CO2 Hydrogenation: Effects of Calcination Temperature of Alumina Support

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Although alumina-supported copper materials have been widely used as the catalyst in methanol synthesis from CO2 hydrogenation, the effect of calcination temperature of alumina support is not yet fully understood. In this work, hierarchical meso–macroporous alumina material prepared by a sol–gel process was calcined at different temperatures (600, 700, 800 and 900 °C) and used as the supported copper catalysts. XRD, SEM-EDS mapping, XANES and hydrogen temperature-programmed reduction studies suggested that highly dispersed CuO nanoparticles and strong interaction between CuO and alumina support were formed when the alumina support was calcined at 600 °C (Cu/H-600). H2 temperature-programmed desorption and CO2 temperature-programmed desorption results revealed that the strong metal-support interaction of Cu/H-600 created a larger number of active sites for H2 and CO2 adsorption at moderate temperature (100–300 °C), resulting in the maximum yield of methanol. Increasing calcination temperature (700–900 °C) caused an increase of CuO crystallite size and a weakened interaction between CuO and alumina support, resulting in a lower yield of methanol but enhancing the formation of CO. The plot of CO2 conversion to CO against copper surface area indicated that the surface of metallic copper acted as the active site in reverse water–gas shift reaction. The conversion of methanol to dimethyl ether was found to relate with the number of weak acid sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Goeppert A, Czaun M, Jones JP, Prakash GKS, Olah GA (2014) Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  2. Díez-Ramírez J, Valverde JL, Sánchez P, Dorado F (2016) Catal Lett 146:373–382

    Article  Google Scholar 

  3. Song Y, Liu X, Xiao L, Wu W, Zhang J, Song X (2015) Catal Lett 145:1272–1280

    Article  CAS  Google Scholar 

  4. Zhan H, Li F, Xin C, Zhao N, Xiao F, Wei W, Sun Y (2015) Catal Lett 145:1177–1185

    Article  CAS  Google Scholar 

  5. Liang XL, Xie JR, Liu ZM (2015) Catal Lett 145:1138–1147

    Article  CAS  Google Scholar 

  6. Zhou L, Wang Q, Ma L, Chen J, Ma J, Zi Z (2015) Catal Lett 145:612–619

    Article  CAS  Google Scholar 

  7. Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J (2016) Energy Convers Manag 118:21–31

    Article  CAS  Google Scholar 

  8. Witoon T, Chalorngtham J, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2016) Chem Eng J 293:327–336

    Article  CAS  Google Scholar 

  9. Witoon T, Permsirivanich T, Kanjanasoontorn N, Akkaraphataworn C, Seubsai A, Faungnawakij K, Warakulwit C, Chareonpanich M, Limtrakul J (2015) Catal Sci Technol 5:2347–2357

    Article  CAS  Google Scholar 

  10. Lei H, Hou Z, Xie J (2016) Fuel 164:191–198

    Article  CAS  Google Scholar 

  11. Lei H, Nie R, Wu G, Hou Z (2015) Fuel 154:161–166

    Article  CAS  Google Scholar 

  12. Sloczyński J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J (2006) Appl Catal A Gen 310:127–137

    Article  Google Scholar 

  13. Kanai Y, Watanabe T, Fujitani T, Saito M, Nakamura J, Uchijima T (1994) Catal Lett 27:67–78

    Article  CAS  Google Scholar 

  14. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP (1979) J Catal 56:407–429

    Article  CAS  Google Scholar 

  15. Frost JC (1998) Nature 334:577–580

    Article  Google Scholar 

  16. Trueba M, Trasatti SP (2005) Eur J Inorg Chem 17:3393–3403

    Article  Google Scholar 

  17. Hosseininejad S, Afacan A, Hayes RE (2012) Chem Eng Res Des 90:825–833

    Article  CAS  Google Scholar 

  18. Zhang L, Zhang H, Ying W, Fang D (2013) Can J Chem Eng 91:1538–1546

    Article  CAS  Google Scholar 

  19. Hong UG, Hwang S, Seo JG, Lee J, Song IK (2011) J Ind Eng Chem 17:316–320

    Article  CAS  Google Scholar 

  20. Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F (2013) J Energy Chem 22:919–927

    Article  CAS  Google Scholar 

  21. Yahiro H, Nakaya K, Yamamoto T, Saiki K, Yamaura H (2006) Catal Comm 7:228–231

    Article  CAS  Google Scholar 

  22. Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Energy Convers Manag 103:886–894

    Article  CAS  Google Scholar 

  23. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Chem Mater 19:3393–3398

    Article  CAS  Google Scholar 

  24. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) J Catal 249:185–194

    Article  CAS  Google Scholar 

  25. Mohamed MM, Abu-Zied BM (2000) Thermochim Acta 359:109–117

    Article  CAS  Google Scholar 

  26. Chen D, Wu Z (2006) Radiat Phys Chem 75:1921–1925

    Article  CAS  Google Scholar 

  27. Wan H, Wang Z, Zhu J, Li X, Liu B, Gao F, Dong L, Chen Y (2008) Appl Catal B Environ 79:254–261

    Article  CAS  Google Scholar 

  28. Xia WS, Wan HL, Chen Y (1999) J Mol Catal A Chem 138:185–195

    Article  CAS  Google Scholar 

  29. Luo MF, Fang P, He M, Xie YL (2005) J Mol Catal A Chem 239:234–248

    Article  Google Scholar 

  30. Reddy GK, Rao KSR, Rao PK (1999) Catal Lett 59:157–160

    Article  CAS  Google Scholar 

  31. Natesakhawat S, Ohodnicki PR Jr, Howard BH, Lekse JW, Baltrus JP, Matranga C (2013) Top Catal 56:1752–1763

    Article  CAS  Google Scholar 

  32. Tabatabaei J, Sakakini BH, Watson MJ, Waugh KC (1999) Catal Lett 59:143–149

    Article  CAS  Google Scholar 

  33. Dan M, Mihet M, Tasnadi-Asztalos Z, Imre-Lucaci A, Katona G, Lazar MD (2015) Fuel 147:260–268

    Article  CAS  Google Scholar 

  34. Guo X, Mao D, Lu G, Wang S, Wu G (2011) J Mol Catal A Chem 345:60–68

    Article  CAS  Google Scholar 

  35. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Appl Catal A Gen 350:16–23

    Article  CAS  Google Scholar 

  36. Zhang MH, Liu ZM, Lin GD, Zhang HB (2013) Appl Catal A Gen 451:28–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the Graduate Program Scholarship from the Graduate School, Kasetsart University; this work was further financially supported by the Thailand Research Fund (Grant No. RSA5980074), the Center of Excellence on Petrochemical and Materials Technology (PETROMAT), the National Research University Project of Thailand (NRU), the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand through its program of Center of Excellence Network, and the Kasetsart University Research and Development Institute (KURDI). The authors would like to thank the support from the Synchrotron Light Research Institute (BL5.2: SUT-NANOTEC-SLRI XAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thongthai Witoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjanasoontorn, N., Permsirivanich, T., Numpilai, T. et al. Structure–Activity Relationships of Hierarchical Meso–Macroporous Alumina Supported Copper Catalysts for CO2 Hydrogenation: Effects of Calcination Temperature of Alumina Support. Catal Lett 146, 1943–1955 (2016). https://doi.org/10.1007/s10562-016-1849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1849-8

Keywords

Navigation