Skip to main content

Advertisement

Log in

Impact of Na Promoter on Structural Properties and Catalytic Performance of CoNi/Al2O3 Nanocatalysts for the CO Hydrogenation Process: Fischer–Tropsch Technology

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work deals with the effect of adding Na to bimetallic sol–gel derived alumina supported Co/Ni nanocatalysts in Fischer–Tropsch synthesis. The catalyst activity and selectivity changed with different levels of Na, and the catalyst with 2 % Na loading was selected as an optimal catalyst to compare with un-promoted Co/Ni/Al2O3 catalyst. Na reduced the methane selectivity by increasing the chain-growth probability (α-value) at 12 bar. The results of physico-chemical characterizations show that the Na promoter plays a significant role in the catalytic structure. Additionally, the kinetic behavior was considered in absence and presence of Na over CoNi/Al2O3 catalysts. We applied an enolic approach, which was developed based on the interaction between adsorption HCO and dissociated adsorption hydrogen, through the Langmuir–Hinshelwood–Hougen–Watson (LHHW) adsorption theory. Kinetic parameters, including the rate constant (k) and activation energy (E a) of the catalysts, were also determined. The results show that, by adding Na, the activation energy (E a) decreases and the reaction rate (–R CO) increases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lund H (2007) Energy 32:912

    Article  Google Scholar 

  2. Rauch R, Kiennemann A, Sauciuc A (2013) Elsevier, Amsterdam, ISBN: 978-0-444-56330-9, p 397

  3. Pirola C, Scavini M, Galli F, Vitali S, Comazzi A, Manenti F, Ghigna P (2014) Fuel 132:62

    Article  CAS  Google Scholar 

  4. Tavasoli A, Taghavi S, Tabyar S, Karimi S (2014) Int J Ind Chem 5:1

    Article  Google Scholar 

  5. Enger BC, Fossan Å, Borg Ø, Rytter E (2011) J Catal 284:9

    Article  CAS  Google Scholar 

  6. Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for Biomass-derived syngas. NREL/TP-510-34929

  7. Ji L, Lin J, Zeng HC (2000) J Phys Chem B 104:1783

    Article  CAS  Google Scholar 

  8. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16

    Article  CAS  Google Scholar 

  9. Kang SH, Ryu JH, Kim JH, Prasad PSS, Bae JW, Cheon JY (2011) Catal Lett 141:1464

    Article  CAS  Google Scholar 

  10. Liu Y, Chen J, Zhang J (2007) Chin J Chem Eng 15:63

    Article  CAS  Google Scholar 

  11. Lόnyi F, Valyon J (2001) Microporous Mesoporous Mater 47:293

    Article  Google Scholar 

  12. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem 114:1085

    CAS  Google Scholar 

  13. Das SK, Mohanty P, Majhi S, Pant KK (2013) Appl Energy 111:267

    Article  CAS  Google Scholar 

  14. Wang S, Yin Q, Guo J, Ru B, Zhu L (2013) Fuel 108:597

    Article  CAS  Google Scholar 

  15. Bono MS Jr, Anderson AM, Carroll MK (2010) J Sol Gel Sci Technol 53:216

    Article  CAS  Google Scholar 

  16. Okabe K, Li X, Matsuzaki T, Arakawa H (2000) J Sol Gel Sci Technol 19:519

    Article  CAS  Google Scholar 

  17. Wang T, Li H, Yang Y, Xiang H, Li Y (2014) Fuel Process Technol 118:117

    Article  Google Scholar 

  18. Arai H, Mitsuishi K, Seiyama T (1984) Chem Lett 8:1291

    Article  Google Scholar 

  19. Steen EV, Schulz H (1999) Appl Catal A 186:309

    Article  Google Scholar 

  20. Van Der Laan GP, Beenackers AACM (1999) Catal Rev 41:255

    Article  Google Scholar 

  21. Huff GA, Satterfield CN (1984) Ind Eng Chem Process Design Dev 23:696

    Article  CAS  Google Scholar 

  22. Sari A, Zamani Y, Taheri SA (2009) Fuel Process Technol 90:1305

    Article  CAS  Google Scholar 

  23. Wang YN, Ma WP, Lu YJ, Yang J, Xu YY, Xiang HW, Li YW, Zhao YL, Zhang B (2003) Fuel 82:195

    Article  CAS  Google Scholar 

  24. Teng BT, Chang J, Zhang CH, Cao DB, Yang J, Liu Y, Guo XH, Xiang HW, Li YW (2006) Appl Catal A 301:39

    Article  CAS  Google Scholar 

  25. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:61

    Article  CAS  Google Scholar 

  26. Yates IC, Satterfield CN (1991) Energy Fuels 5:168

    Article  CAS  Google Scholar 

  27. Visconti CG, Tronconi E, Lietti L, Zennaro R, Forzatti P (2007) Chem Eng Sci 62:5338

    Article  CAS  Google Scholar 

  28. Todic B, Bhatelia T, Froment GF, Ma W, Jacobs G, Davis BH (2013) Ind Eng Chem Res 52:669

    Article  CAS  Google Scholar 

  29. Iglesia E (1997) Appl Catal A 161:59

    Article  CAS  Google Scholar 

  30. Feyzi M, Babakhanian A, Gholivand MB (2014) Korean J Chem Eng 31:37

    Article  CAS  Google Scholar 

  31. Yan Z, Wang Z, Bukur DB, Goodman DW (2009) J Catal 268:196

    Article  CAS  Google Scholar 

  32. Johnson BG, Bartholomew CH, Goodman DW (1991) J Catal 128:231

    Article  CAS  Google Scholar 

  33. Leckel D (2009) Energy Fuels 23:2342

    Article  CAS  Google Scholar 

  34. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210

    Article  CAS  Google Scholar 

  35. Ishihara T, Horiuchi N, Eguchi K, Arai H (1990) Appl Catal A 66:267

    Article  CAS  Google Scholar 

  36. Ishihara T, Horiuchi N, Eguchi K, Arai H (1991) J Catal 130:202

    Article  CAS  Google Scholar 

  37. Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) J Catal 136:232

    Article  CAS  Google Scholar 

  38. Fan L, Yoshii K, Yan S, Zhou J, Fujimoto K (1997) Catal Today 36:295

    Article  CAS  Google Scholar 

  39. Rytter E, Skagseth TH, Eri S, Sjåstad AO (2010) Ind Eng Chem Res 49:4140

    Article  CAS  Google Scholar 

  40. Wang S, Yin Q, Guo J, Zhu L (2013) Energy Fuels 27:3961

    Article  CAS  Google Scholar 

  41. Varma RL, Dan-Chu L, Mathews JF, Bakhshi NN (1985) Can J Chem Eng 63:72

    Article  CAS  Google Scholar 

  42. Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch synthesis and related synthesis. Wiley, New York

    Google Scholar 

  43. Nikparsa P, Mirzaei AA, Atashi H (2014) J Fuel Chem Technol 42:710

    Article  CAS  Google Scholar 

  44. Fazlollahi F, Sarkari M, Zare A, Mirzaei AA, Atashi H (2012) J Ind Eng Chem 18:1223

    Article  CAS  Google Scholar 

  45. Liu JX, Su HY, Li WX (2013) Catal Today 215:36

    Article  CAS  Google Scholar 

  46. Keyser MJ, Everson RC, Espinoza RL (2000) Ind Eng Chem Res 39:48

    Article  CAS  Google Scholar 

  47. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287

    Article  CAS  Google Scholar 

  48. Post MFM, Hoog AC, Minderhoud JK, Sie ST (1989) AIChE J 35:1107

    Article  CAS  Google Scholar 

  49. Mansouri M, Atashi H, Mirzaei AA, Jangi R (2013) J Ind Chem 4:1

    Google Scholar 

  50. Atashi H, Siami F, Mirzaei AA, Sarkari M (2010) J Ind Eng Chem 16:952

    Article  CAS  Google Scholar 

  51. Balonek CM, LillebØ AH, Rane S, Rytter E, Schmidt LD, Holmen A (2010) Catal Lett 138:8

    Article  CAS  Google Scholar 

  52. Blekkan EA, Holmen A, Vada S (1993) Acta Chem Scand 47:275

    Article  CAS  Google Scholar 

  53. Uner DO (1998) Ind Eng Chem Res 37:2239

    Article  CAS  Google Scholar 

  54. Trepanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Appl Catal A 353:193

    Article  CAS  Google Scholar 

  55. LillebØ AH, Patanou E, Yang J, Blekkan AE, Holmen A (2013) Catal Today 215:60

    Article  Google Scholar 

  56. Wesner DA, Linden G, Bonzel HP (1986) Appl Surf Sci 26:335

    Article  CAS  Google Scholar 

  57. Shimura K, Miyazawa T, Hanaoka T, Hirata S (2015) Appl Catal A 494:1

    Article  CAS  Google Scholar 

  58. de la Osaa AR, De Lucasa A, Valverdea JL, Romeroa A, Monteagudob I, Cocab P, Sáncheza P (2011) Catal Today 167:96

    Article  Google Scholar 

  59. Dry ME, Oosthuizen GJ (1968) J Catal 11:18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thanks from University of Sistan and Baluchestan (USB), and Bioenergy 2020+ GmbH for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paria Nikparsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikparsa, P., Mirzaei, A.A. & Rauch, R. Impact of Na Promoter on Structural Properties and Catalytic Performance of CoNi/Al2O3 Nanocatalysts for the CO Hydrogenation Process: Fischer–Tropsch Technology. Catal Lett 146, 61–71 (2016). https://doi.org/10.1007/s10562-015-1620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1620-6

Keywords

Navigation