Skip to main content
Log in

Catalytic Efficiency of Ceria–Zirconia and Ceria–Hafnia Nanocomposite Oxides for Soot Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic oxidation of soot particulates has been investigated over CeO2, CeO2–ZrO2 and CeO2–HfO2 nanocomposite oxides. These oxides were synthesized by a modified precipitation method employing dilute aqueous ammonia solution. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and BET surface area methods. The soot oxidation has been evaluated by a thermogravimetric method under ‘tight contact’ conditions. The XRD results revealed formation of cubic CeO2, Ce0.75Zr0.25O2 and Ce0.8Hf0.2O2 phases in case of CeO2, CeO2–ZrO2 and CeO2–HfO2 samples, respectively. TEM studies confirm the nanosized nature of the catalysts. Raman measurements suggest the presence of oxygen vacancies, lattice defects and oxide ion displacement from normal ceria lattice positions. UV-Vis DRS studies show presence of charge transfer transitions Ce3+←O2− and Ce4+←O2− respectively. The catalytic activity studies suggest that the oxidation of soot could be enhanced by incorporation of Zr4+ and Hf4+ into the CeO2 lattice. The CeO2–HfO2 combination catalyst exhibited better activity than the CeO2–ZrO2. The observed high activity has been related to the nanosized nature of the composite oxides and the oxygen vacancy created in the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trovarelli A (2002) In: Hutchings GJ (ed) Catalysis by ceria and related materials, catalytic science series, vol 2. Imperial College Press, London

    Google Scholar 

  2. Trovarelli A, de Leitenburg C, Dolcetti G (1997) Chemtech 27:32–37

    CAS  Google Scholar 

  3. Monte RD, Kaspar J (2005) J Mater Chem 15:633–648

    Article  Google Scholar 

  4. Mackrodt WC, Fowles M, Morris MA (1991) Eur Pat 91:307, 165

    Google Scholar 

  5. Matsumoto SI (2004) Catal Today 90:183–190

    Article  CAS  Google Scholar 

  6. Krishna K, Bueno-Lopez A, Makkee M, Moulijn JA (2007) Appl Catal B Environ 75:189–200

    Article  CAS  Google Scholar 

  7. Martinez-Arias A, Fernandez-Garcia M, Iglesias-Juez A, Hungria AB, Anderson JA, Conesa JC, Soria J (2001) Appl Catal B Environ 31:51–56

    Article  CAS  Google Scholar 

  8. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) J Phys Chem C 111:1878–1881

    Article  CAS  Google Scholar 

  9. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Appl Catal A Gen 246:323–334

    Article  CAS  Google Scholar 

  10. Tomishige K, Kunimori K (2002) Appl Catal A Gen 237:103–109

    Article  CAS  Google Scholar 

  11. Otsuka K, Wang Y, Nakamura M (1999) Appl Catal A Gen 183:317–324

    Article  CAS  Google Scholar 

  12. Li Y, He D, Zhu Q, Zhang X, Xu B (2004) J Catal 221:584–593

    Article  CAS  Google Scholar 

  13. Cutrufello MG, Ferino I, Solinas V, Primavera A, Trovarelli A, Auroux A, Picciau C (1999) Phys Chem Chem Phys 1:3369–3375

    Article  CAS  Google Scholar 

  14. Cutrufello MG, Ferino I, Monaci R, Rombi E, Solinas V (2002) Top Catal 19:225–240

    Article  CAS  Google Scholar 

  15. Solinas V, Rombi E, Ferino I, Cutrufello MG, Colon G, Navio JA (2003) J Mol Catal A Chem 204–205:629–635

    Article  Google Scholar 

  16. Reddy BM, Lakshmanan P, Bharali P, Saikia P (2006) J Mol Catal A Chem 258:355–360

    Article  CAS  Google Scholar 

  17. Reddy BM, Thrimurthulu G, Saikia P, Bharali P (2007) J Mol Catal A Chem 275:167–173

    Article  CAS  Google Scholar 

  18. Reddy BM, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, Lopez-Cartes C, Rojas TC, Fernandez A (2006) J Phys Chem B 110:9140–9147

    Article  CAS  Google Scholar 

  19. Ozawa M, Matuda K, Suzuki S (2000) J Alloys Compd 303–304:56–59

    Article  Google Scholar 

  20. Małecka MA, Kepinski L, Mista W (2007) Appl Catal B Environ 74:290–298

    Article  Google Scholar 

  21. Bueno-Lopez A, Krishna K, Makkee M, Moulijn JA (2005) J Catal 230:237–248

    Article  CAS  Google Scholar 

  22. Zhua L, Yu J, Wang X (2007) J Hazard Mater 140:205–210

    Article  Google Scholar 

  23. Liu J, Zhao Z, Xu C, Duan A, Wang L, Zhang S (2007) Catal Commun 8:220–224

    Article  CAS  Google Scholar 

  24. Neeft J, Makkee M, Moulijn J (1996) Chem Eng J 64:295–302

    CAS  Google Scholar 

  25. Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A (2006) Catal Today 114:40–47

    Article  CAS  Google Scholar 

  26. Bueno-Lopez A, Krishna K, Makkee M, Moulijn JA (2005) Catal Lett 99:203–205

    Article  CAS  Google Scholar 

  27. Atribak I, Bueno-Lopez A, Garcia-Garcia A (2008) Catal Commun 9:250–255

    Article  CAS  Google Scholar 

  28. Krishna K, Bueno-Lopez A, Makkee M, Moulijn JA (2007) Top Catal 44–45221–228

  29. Kenevey K, Valdivieso F, Soustelle M, Pijolat M (2001) Appl Catal B Environ 29:93–101

    Article  CAS  Google Scholar 

  30. Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grünert W (2007) J Phys Chem C 111:10478–10483

    Article  CAS  Google Scholar 

  31. Reddy BM, Khan A (2005) Catal Surv Asia 9:155–171

    Article  CAS  Google Scholar 

  32. Bozo C, Gaillard F, Guilhaume N (2001) Appl Catal A Gen 220:69–77

    Article  CAS  Google Scholar 

  33. Colon G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Finocchio E, Daturi M, Binet C, Lavalley JC, Baker RT, Bernal S (1998) J Chem Soc Faraday Trans 94:3717–3726

    Article  CAS  Google Scholar 

  34. Yashima M, Arashi H, Kakihana M, Yoshimura M (1992) J Am Ceram Soc 75:1541–1549

    Article  CAS  Google Scholar 

  35. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  36. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441–451

    Article  CAS  Google Scholar 

  37. Gao X, Wachs IE (2000) J Phys Chem B 1041261–1268

  38. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025–3030

    Article  CAS  Google Scholar 

  39. Hirata T, Asari E, Kitajima M (1994) J Solid State Chem 110:201–207

    Article  CAS  Google Scholar 

  40. Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369–1376

    Article  Google Scholar 

  41. Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964–4970

    Article  CAS  Google Scholar 

  42. Martinez-Arias A, Fernandez-Garcia M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) J Phys Chem B 104:4038–4046

    Article  CAS  Google Scholar 

  43. Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178–185

    Article  CAS  Google Scholar 

  44. Fujimori H, Yashima M, Sasaki S, Kakihana M, Mori T, Tanaka M, Yoshimura M (2001) Phys Rev B 64:134104-1–134104-5

    Article  Google Scholar 

  45. Bensalem A, Bozon-Verduraz F, Delamar M, Bugli G (1995) Appl Catal A Gen 121:81–93

    Article  CAS  Google Scholar 

  46. Zaki MI, Hussein GAM, Mansour SAA, Ismail HM, Mekhemer GAH (1997) Colloids Surf A Physicochem Eng Asp 127:47–56

    Article  CAS  Google Scholar 

  47. Bensalem A, Muller JC, Bozon-Verduraz F (1992) J Chem Soc Faraday Trans 88:153–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr S. Loridant, IRCELYON, France for Raman results. B.M. Reddy thanks Korea Federation of Science and Technology (KOFST) for a visiting fellowship under Brain Pool Program. P. Bharali, G. Thrimurthulu, P. Saikia and L. Katta thank Council of Scientific and Industrial Research (CSIR), New Delhi for the research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, B.M., Bharali, P., Thrimurthulu, G. et al. Catalytic Efficiency of Ceria–Zirconia and Ceria–Hafnia Nanocomposite Oxides for Soot Oxidation. Catal Lett 123, 327–333 (2008). https://doi.org/10.1007/s10562-008-9427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9427-3

Keywords

Navigation