Skip to main content
Log in

Vasostatin-1 Stops Structural Remodeling and Improves Calcium Handling via the eNOS-NO-PKG Pathway in Rat Hearts Subjected to Chronic β-Adrenergic Receptor Activation

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Chronically elevated catecholamine levels activate cardiac β-adrenergic receptors, which play a vital role in the pathogenesis of heart failure. Evidence suggests that vasostatin-1 (VS-1) exerts anti-adrenergic effects on isolated and perfused hearts in vitro. Whether VS-1 ameliorates hypertrophy/remodeling by inducing the chronic activation of β-adrenergic receptors is unknown. The present study aims to test the efficacy of using VS-1 to treat the advanced hypertrophy/remodeling that result from chronic β-adrenergic receptor activation and to determine the cellular and molecular mechanisms that underlie this response.

Methods and Result

Rats were subjected to infusion with either isoprenaline (ISO, 5 mg/kg/d), ISO plus VS-1 (30 mg/kg/d) or placebo for 2 weeks. VS-1 suppressed chamber dilation, myocyte hypertrophy and fibrosis and improved in vivo heart function in the rats subjected to ISO infusion. VS-1 increased phosphorylated nitric oxide synthase levels and induced the activation of protein kinase G. VS-1 also deactivated multiple hypertrophy signaling pathways that were triggered by the chronic activation of β-adrenergic receptors, such as the phosphoinositide-3 kinase (PI3K)/Akt and Ca2+/calmodulin-dependent kinase (CaMK-II) pathways. Myocytes isolated from ISO + VS-1 hearts displayed higher Ca2+ transients, shorter Ca2+ decays, higher sarcoplasmic reticulum Ca2+ levels and higher L-type Ca2+ current densities than the ISO rat hearts. VS-1 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase, phospholamban and Cav1.2, indicating improved calcium handling.

Conclusions

Chronic VS-1 treatment inhibited the progression of hypertrophy, fibrosis, and chamber remodeling, and improved cardiac function in a rat model of ISO infusion. In addition, Ca2+ handling and its molecular modulation were also improved by VS-1. The beneficial effects of VS-1 on cardiac remodeling may be mediated by the enhanced activation of the eNOS-cGMP-PKG pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Samuels MA. The brain-heart connection. Circulation. 2007;116:77–84.

    Article  PubMed  Google Scholar 

  2. Goldspink DF, Burniston JG, Ellison GM, Clark WA, Tan LB. Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol. 2004;89:407–16.

    Article  CAS  PubMed  Google Scholar 

  3. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991;5:3037–46.

    CAS  PubMed  Google Scholar 

  4. Kitagawa, Y, Yamashita, D, Ito, H and Takaki, M. Reversible effects of isoproterenol-induced hypertrophy on in situ left vetricular function in rat hearts. Am J Physiol Heart Circ Physiol 2004;287:H277-HH85.

  5. Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res. 2005;65:230–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN, Levine TB, Olivari MT, Gaberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  7. Esler M, Kaye D, Lambert G, Esler D, Jennings G. Adrenergic nervous system in heart failure. Am J Cardiol. 1997;80:7 L–14 L.

    Article  Google Scholar 

  8. Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res. 2008;80:330–8.

    Article  CAS  PubMed  Google Scholar 

  9. Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B, Chromogranin AN. Terminal fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol. 2004;136:217–24.

    Article  CAS  PubMed  Google Scholar 

  10. Gallo MP, Levi R, Ramella R, Brero A, Boero O, Tota B, et al. Endothelium-derived nitric oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium. Am J Physiol Heart Circ Physiol. 2007;292:2906–12.

    Article  Google Scholar 

  11. Cerra MC, De Iuri L, Angelone T, Corti A, Tota B, Recombinant N. Terminal fragments of chromogranin-a modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol. 2006;101:43–52.

    Article  CAS  PubMed  Google Scholar 

  12. Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, et al. Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circ Physiol. 2007;293:719–27.

    Article  Google Scholar 

  13. Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, et al. Characterization of natural vasostatin-containing peptides in rat heart. FEBS J. 2006;273:3311–21.

    Article  CAS  PubMed  Google Scholar 

  14. Corti A, Perez Sanchez L, Gasparri A, Curnis F, Longhi R, Branaazza A, et al. Production and structure characterization of recombinant chromograin a N-terminal fragment (vasostatin. Eur J Biochem. 1997;248:692–9.

    Article  CAS  PubMed  Google Scholar 

  15. Huang CX, Yuan MJ, Huang H, Wu G, Liu Y, SB Y, et al. Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides. 2009;30:2286–91.

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto K, Dang QN, Kennedy SP, Osathanondh R, Kelly RA, Lee RT. Induction of tenascin-C in cardiac myocytes by mechanical deformation. J Biol Chem. 1999;274:21840–6.

    Article  CAS  PubMed  Google Scholar 

  17. Takinmoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5 A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.

    Article  Google Scholar 

  18. Liu B, Ho HT, Velez-Cortes F, Lou Q, Valdivia CR, Knollmann BC, et al. Genetic ablation of ryanodine receptor 2 phosphorylation at Ser-2808 aggravates Ca(2+)-dependent cardiomyopathy by exacerbating diastolic Ca2+ release. J Physiol. 2014;592:1957–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soltysinska E, Olesen SP, Osadchii OE. Myocardial structural, contractile, and electrophysiological changes in the Guinea-pig heart failure model induced by chronic sympathetic activation. Exp Physiol. 2011;96:647–63.

    Article  PubMed  Google Scholar 

  20. Osadchii OE. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev. 2007;12:66–86.

    Article  CAS  PubMed  Google Scholar 

  21. Naohiro Yano VI, Ting C. Zhao, Andy Tseng, James F. Padbury, and Yi-tang Tseng. A novel signaling pathway for beta-adrenergic receptor-mediated activation of phosphoinositide 3-kinase in H9c2 cardiomyocytes. Am J Physiol Heart Circ Physiol. 2007;293:H385–H93.

    Article  PubMed  Google Scholar 

  22. Grimm M, Brown JH. Beta-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol. 2010;48:322–30.

    Article  CAS  PubMed  Google Scholar 

  23. Lincoln T, Potter TC, Vallee L. Willman, David E. Wolfe. Synthesis, binding, release, and metabolism of norepinephrine in normal and transplanted dog hearts. Circ Res. 1965;16:468–81.

    Article  Google Scholar 

  24. Bold AJd. Atrial natriuretic factor: A hormone produced by the heart. Science. 1985;230:767–70.

    Article  Google Scholar 

  25. Tota B, Angelone T, Mazza R, Cerra M. The chromogranin A-derived vasostatins new players in the endocrine heart. Curr Med Chem. 2008;15:1444–51.

    Article  CAS  PubMed  Google Scholar 

  26. Pieroni, M, Corti, A, Tota, B, Curnis, F, Angelone, T, Colombo, B, Cerra, MC, Bellocci, F, Crea, F and Maseri, A. Myocardial production of chromogranin a in human heart a new regulator of cardiac function. Eur Heart J 2007;28:1117–1127.

  27. Brodde OE. Beta-adrenoceptor blocker treatment and the cardiac beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure. Naunyn Schmiedeberg's Arch Pharmacol. 2007;374:361–72.

    Article  CAS  Google Scholar 

  28. Buys ES, Raher MJ, Blake SL, Neilan TG, Graveline AR, Passeri JJ, et al. Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol. 2007;293:H620–H7.

    Article  CAS  PubMed  Google Scholar 

  29. Ichinose F, Bloch KD, JC W, Hataishi R, Aretz HT, Picard MH, et al. Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol. 2004;286:H1070–H5.

    Article  CAS  PubMed  Google Scholar 

  30. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res. 2004;94:1256–62.

    Article  CAS  PubMed  Google Scholar 

  31. Ramella R, Boero O, Alloatti G, Angelone T, Levi R, Gallo MP. Vasostatin 1 activates eNOS in endothelial cells through a proteoglycan-dependent mechanism. J Cell Biochem. 2010;110:70–9.

    CAS  PubMed  Google Scholar 

  32. Cerra MC, Gallo MP, Angelone T, Quintieri AM, Pulera E, Filice E, et al. The homologous rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB J. 2008;22:3992–4004.

    Article  CAS  PubMed  Google Scholar 

  33. Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem. 2000;275:14466–75.

    Article  CAS  PubMed  Google Scholar 

  34. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A. 2002;99:12333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsui T, Li L, JC W, Cook SA, Nagoshi T, Picard MH, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277:22896–901.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu S, Nagayama T, Koitabashi N, Zhang M, Zhou L, Bedja D, et al. Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovasc Res. 2009;81:301–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2 + −ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75:434–42.

    Article  CAS  PubMed  Google Scholar 

  38. Nicolaou P, Kranias EG. Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology. Front Biosci. 2009;14:3571–85.

    Article  CAS  Google Scholar 

  39. Schwinger RHG, Munch G, Bolck B, Karczewski P, Krause E-G, Erdmann E. Reduced Ca2 + −sensitivity of SERCA2a in failing human myocardium due to reduced serin-16 phospholamban phoshorylation. J Mol Cell Cardiol. 1999;31:479–91.

    Article  PubMed  Google Scholar 

  40. Chu G, Lester JW, Young KB, Luo W, Zhai J, Kranias EGA. Single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to β-agonists. J Biol Chem. 2000;275:38938–43.

    Article  CAS  PubMed  Google Scholar 

  41. Bers D. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    Article  CAS  PubMed  Google Scholar 

  42. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119:1230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang LH, Gawler DJ, Hodson N, Milligan CJ, Pearson HA, Porter V, et al. Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. J Biol Chem. 2000;275:6135–43.

    Article  CAS  PubMed  Google Scholar 

  45. Schroder F, Single L. Type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res. 2003;60:268–77.

    Article  CAS  PubMed  Google Scholar 

  46. Yeves AM, Garciarena CD, Nolly MB, Chiappe de Cingolani GE, Cingolani HE, Ennis IL. Decreased activity of the Na+/H+ exchanger by phosphodiesterase 5 A inhibition is attributed to an increase in protein phosphatase activity. Hypertension. 2010;56:690–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, et al. Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation. 2005;112:2307–17.

    Article  CAS  PubMed  Google Scholar 

  48. Perez NG, Piaggio MR, Ennis IL, Garciarena CD, Morales C, Escudero EM, et al. Phosphodiesterase 5 A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension. 2007;49:1095–103.

    Article  CAS  PubMed  Google Scholar 

  49. Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, et al. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol. 2009;53:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klaiber M, Kruse M, Völker K, Schröter J, Feil R, Freichel M, et al. Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol. 2010;105:583–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kilic A, Bubikat A, Gassner B, Baba HA, Kuhn M. Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology. 2007;148:4162–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei Province, China (no. 2013CFA117) the Fundamental Research Funds for the Central Universities of China (no. 302274052), and Project of Wuhan Municipal Science and Technology (no.2014060101010033). The authors are grateful to the Wuhan University School of Basic Medical Science Medical Research Center for Structural biology for assisting in the performance of the experiments to test Ca2+ transients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Huang.

Ethics declarations

Disclosures

None

Additional information

Dandan Wang and Yinguang Shan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Shan, Y., Huang, Y. et al. Vasostatin-1 Stops Structural Remodeling and Improves Calcium Handling via the eNOS-NO-PKG Pathway in Rat Hearts Subjected to Chronic β-Adrenergic Receptor Activation. Cardiovasc Drugs Ther 30, 455–464 (2016). https://doi.org/10.1007/s10557-016-6687-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-016-6687-9

Keywords

Navigation