Skip to main content
Log in

Role of the β3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

β3-Adrenoceptors (AR) stimulate cardiac Na+/K+ pump in healthy hearts. β3-ARs are upregulated by persistent sympathetic hyperactivity; however, their effect on Na+/K+ ATPase activity and ventricular function in this condition is still unknown. Here, we investigate preventive effects of additional β3-AR activation (BRL) on Na+/K+ ATPase activity and in vivo hemodynamics in a model of noradrenaline-induced hypertrophy. Rats received NA or NA plus simultaneously administered BRL in vivo infusion for 14 days; their cardiac function was investigated by left ventricular pressure–volume analysis. Moreover, fibrosis and apoptosis were also assessed histologically. NA induced an hypertrophic pattern, as detected by morphological, histological, and biochemical markers. Additional BRL exposure reversed the hypertrophic pattern and restored Na+/K+ ATPase activity. NA treatment increased systolic function and depressed diastolic function (slowed relaxation). Additional BRL treatment reversed most NA-induced hemodynamic changes. NA decreased Na+/K+ pump α2 subunit expression selectively, a change also reversed by additional BRL treatment. Increasing β3-AR stimulation may prevent the consequences of chronic NA exposure on Na+/K+ pump and in vivo hemodynamics. β3-AR agonism may thus represent a new therapeutic strategy for pharmacological modulation of hypertrophy under conditions of chronically enhanced sympathetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103(12):1649–1655

    Article  PubMed  CAS  Google Scholar 

  2. Morimoto A, Hasegawa H, Cheng HJ, Little W, Cheng CP (2004). Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol 286(6):H2425–H2433

    Article  PubMed  CAS  Google Scholar 

  3. Altan VM, Arioglu E, Guner S, Ozcelikay T (2007) The ınfluence of diabetes on cardiac β-adrenoceptor subtypes. Heart Fail Rev 12:58–65

    Article  PubMed  CAS  Google Scholar 

  4. Kayki-Mutlu G, Arioglu-Inan E, Ozakca I, Ozcelikay AT. Altan VM (2014). β3-adrenoceptor-mediated responses diabetic rat heart. Gen Physiol Biophys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  5. Barbier J, Rannou-Bekono F, Marchais J, Tanguy S, Carre F (2007) Alterations of β3-adrenoceptors expression and their myocardial functional effects in physiological model of chronic exercise-induced cardiac hypertrophy. Mol Cell Biochem 300:69–75

    Article  PubMed  CAS  Google Scholar 

  6. Watts VL, Sepulveda FM, Cingolani OH, Ho AS, Niu X, Kim R et al (2013) Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol 62:8–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Belge C, Hammond J, Dubois-Deruy E, Manoury B, Hamelet J, Beauloye C et al (2014) Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 129(4):451–462

    Article  PubMed  CAS  Google Scholar 

  8. Aragón JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB et al (2011) Beta3-Adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol 13(25):2683–2691 58)

    Article  CAS  Google Scholar 

  9. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL et al (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59(22):1979–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hermida N, Michel L, Esfahani H, Dubois-Deruy E, Hammond J, Bouzin C et al (2017) Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx366

    Article  Google Scholar 

  11. Zhang ZS, Cheng HJ, On ishi K, Ohte N, Wannenburg T, Cheng CP (2005) Enhanced inhibition of L-type Ca2+ current by {beta}3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther 315(3):1203 – 1211

    Article  PubMed  CAS  Google Scholar 

  12. Masutani S, Cheng HJ, Morimoto A, Hasegawa H, Han QH, Little WC et al (2013) β3 adrenergic receptor antagonist improves exercise performance in pacing induced heart failure. Am J Physiol Heart Circ Physiol 305(6):H923-30

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Q, Zeng F, Liu JB, He Y, Li B, Jiang ZF et al (2012) Upregulation of β3-adrenergic receptor expression in the atrium of rats with chronic heart failure. J Cardiovasc Pharmacol Ther 18(2):133–137

    Article  PubMed  CAS  Google Scholar 

  14. Bundgaard H, Liu CC, Garcia A, Hamilton EJ, Huang Y, Chia KK et al (2010) β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 122(25):2699–2708

    Article  PubMed  CAS  Google Scholar 

  15. Bers DM, Barry WH, Despa S (2003) Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 57(4):897–912

    Article  PubMed  CAS  Google Scholar 

  16. Rasmussen HH, Figtree GA, Krum H, Bundgaard H (2009) The use of beta3-adrenergic receptor agonists in the treatment of heart failure. Curr Opin Investig Drugs 10(9):955–962

    PubMed  CAS  Google Scholar 

  17. Pieske B, Houser SR (2003) [Na+]i handling in the failing human heart. Cardiovasc Res 57:874–886

    Article  PubMed  CAS  Google Scholar 

  18. Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57(4):887–896

    Article  PubMed  CAS  Google Scholar 

  19. Galougahi KK, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA et al (2015) β3-adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 309(5):C286-C295

    Google Scholar 

  20. Radovits T, Oláh A, Lux Á, Németh BT, Hidi L, Birtalan E et al (2013) Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am J Physiol Heart Circ Physiol 305(1):H124-H134

    Article  CAS  Google Scholar 

  21. Abraham D, Mao L (2015) Cardiac pressure-volume loop analysis using conductance catheters in mice. J Vis Exp 103:52942

    Google Scholar 

  22. Holtzhauer M (2006). Basic methods for the biochemical lab. Springer, New York

    Google Scholar 

  23. Li Y, Shi J, Yang BF, Liu L, Han CL, Li WM et al (2012) Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: pathological consequences and protective effects of metoprolol. Br J Pharmacol 165(6):1748–1756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Puhl SL, Kazakov A, Müller A, Fries P, Wagner DR, Böhm M et al (2016) Adenosine A1 receptor activation attenuates cardiac hypertrophy and fibrosis in response to α1-adrenoceptor stimulation in vivo. Br J Pharmacol 173(1):88–102

    Article  PubMed  CAS  Google Scholar 

  25. Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie RH, Sim K et al (2011) Myocardial oxidative stress contributes to transgenic β2-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol 162(5):1012–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fisher JP, Young CN, Fadel PJ (2009) Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci 148(1–2):5–15

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brown L, Sernia C, Newling R, Fletcher P (1992) Cardiac responses after norepinephrine-induced ventricular hypertrophy in rats. J Cardiovasc Pharmacol 20(2):316–323

    Article  PubMed  CAS  Google Scholar 

  28. Zierhut W, Zimmer HG (1989) Significance of myocardial alpha- and beta-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65(5):1417–1425

    Article  PubMed  CAS  Google Scholar 

  29. León-Velarde F, Bourin MC, Germack R, Mohammadi K, Crozatier B, Richalet JP (2001) Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion. Am J Physiol Regul Integr Comp Physiol 280(1):R274-81

    Article  PubMed  Google Scholar 

  30. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  31. Despa S, Lingrel JB, Bers DM (2012) Na/K-ATPase alpha2-isoform preferentially modulates Ca transients and sarcoplasmic reticulum Ca release in cardiac myocytes. Cardiovasc Res 95:480–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Correll RN, Eder P, Burr AR, Despa S, Davis J, Bers DM et al (2014) Overexpression of the Na+/K+ ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ Res 114:249–256

    Article  PubMed  CAS  Google Scholar 

  33. Charlemagne D, Orlowski J, Oliviero P, Rannou F, Sainte Beuve C, Swynghedauw B et al (1994) Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart. J Biol Chem 269(2):1541–1547

    PubMed  CAS  Google Scholar 

  34. Zaza A, Rocchetti M (2013) The late Na+ current–origin and pathophysiological relevance. Cardiovasc Drugs Ther 27(1):61–68

    Article  PubMed  Google Scholar 

  35. Verdonck F, Volders PG, Vos MA, Sipido KR (2003) Increased Na+ concentration and altered Na/K pump activity in hypertrophied canine ventricular cells. Cardiovasc Res 57(4):1035–1043

    Article  PubMed  CAS  Google Scholar 

  36. Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J et al (2015) Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 593(6):1361–1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Désilets M, Baumgarten CM (1986) Isoproterenol directly stimulates the Na+-K+ pump in isolated cardiac myocytes. Am J Physiol 251(1 Pt 2):H218–H225

    PubMed  Google Scholar 

  38. Shah A, Cohen IS, Rosen MR (1988) Stimulation of cardiac alpha receptors increases Na/K pump current and decreases gK via a pertussis toxin-sensitive pathway. Biophys J 54(2):219–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zaza A, Kline RP, Rosen MR (1990) Effects of alpha-adrenergic stimulation on intracellular sodium activity and automaticity in canine Purkinje fibers. Circ Res 66(2):416–426

    Article  PubMed  CAS  Google Scholar 

  40. Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity a subunit isoforms are differently distributed in cells. Proc Natl Acad Sci USA 94:1800–1805

    Article  PubMed  CAS  Google Scholar 

  41. Dostanic I, Paul RJ, Lorenz JN, Theriault S, Van Huysse JW, Lingrel JB (2005) The α2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol Heart Circ Physiol 288:H477–H485

    Article  PubMed  CAS  Google Scholar 

  42. Bernardo BC, Weeks KL, Pretorius L, Mcmullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  PubMed  CAS  Google Scholar 

  43. Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K et al (2017) Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1b are in all cells, the alpha-1a is in a subpopulation, and the beta-2 and beta-3 are mostly absent. Circ Res 120(7):1103–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Balligand JL, Michel LYM (2017) Letter by Balligand and Michel regarding article, “Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1b are in all cells, the alpha-1a Is in a subpopulation, and the beta-2 and beta-3 are mostly absent”. Circ Res 120(12):e54-e55

    Article  PubMed  CAS  Google Scholar 

  45. Gauthier C, Rozec B, Manoury B, Balligand JL (2011) Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep 8(3):184–192

    Article  PubMed  CAS  Google Scholar 

  46. Germack R, Dickenson JM (2006) Induction of {beta}3-adrenergic receptor functional expression following chronic stimulation with noradrenaline in neonatal rat cardiomyocytes. J Pharmacol Exp Ther 316(1):392 – 402

    Article  PubMed  CAS  Google Scholar 

  47. Rozec B, Gauthier C (2006) Beta 3 adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther 111(3):652–673

    Article  PubMed  CAS  Google Scholar 

  48. Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulera E et al (2008) Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG Pathway. Acta Physiol (Oxf) 193:229–239

    Article  CAS  Google Scholar 

  49. Sorrentino SA, Doerries C, Manes C, Speer T, Dessy C, Lobysheva I et al (2011) Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional β1-blockade. J Am Coll Cardiol 57(5):601–611

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ankara University Scientific Research Projects Coordination Unit (Project Number: 13L3336008, 2015). Gizem Kayki Mutlu was a PhD fellow of Turkish Scientific and Technical Research Council (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Kayki Mutlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayki Mutlu, G., Arioglu Inan, E., Karaomerlioglu, I. et al. Role of the β3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Mol Cell Biochem 446, 149–160 (2018). https://doi.org/10.1007/s11010-018-3282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3282-3

Keywords

Navigation