Skip to main content

Advertisement

Log in

A Study of Methane Storage Characteristics of Compacted Adsorbent AU-1

  • Published:
Chemical and Petroleum Engineering Aims and scope

An experimental stand for measuring the specific methane storage capacity of monolithic adsorbent samples was designed and produced. Experimental studies of methane accumulation on compacted monolithic samples of industrial activated carbon were carried out in a range of pressures up to 8 MPa and temperatures from –29.7 to 90°C. It was shown that refrigeration drastically increases methane storage capacity: target level of 150 m3 (NTP)/m3 can be reached at 1.8 MPa and –29.7°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Burchell and M. Rogers, “Low pressure storage of natural gas for vehicular applications,” SAE Techn. Paper Ser., No. 2000-01-2205 (2000).

  2. B. P. Prajwal and K. G. Ayappa, “Evaluating methane storage targets: from powder samples to onboard storage systems,” Adsorption, 20, 769–776 (2014).

    Article  CAS  Google Scholar 

  3. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, and D. F. Quinn, “Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size,” Carbon, 40, No. 7, 989–1002 (2002).

    Article  Google Scholar 

  4. A. Celzard, A. Albiniak, and M. Jasienko-Halat, “Methane storage capacities and pore textures of active carbons undergoing mechanical densification,” Carbon, 43, No. 9, 1990–1999 (2005).

    Article  CAS  Google Scholar 

  5. F. Gándara, H. Furukawa, S. Lee, and O. M. Yaghi, “High methane storage capacity in aluminum metal–organic frameworks,” J. Amer. Chem. Soc., 136, No. 14, 5271–5274 (2014).

    Article  Google Scholar 

  6. M. K. Rana, H. S. Koh, H. Zuberi, and D. J. Siegel, “Methane storage in metal-substituted metal-organic frameworks: thermodynamics, usable capacity, and the impact of enhanced binding sites,” J. Phys. Chem. C, 118, 2929–2942 (2014).

    Article  CAS  Google Scholar 

  7. S. Ma, D. Sun, and J. M. Simmons, “Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake,” J. Amer. Chem. Soc., 130, No. 3, 1012–1016 (2008).

    Article  CAS  Google Scholar 

  8. Y. Peng, V. Krungleviciute, I. Eryazici, et al., “Methane storage in metal–organic frameworks: current records, surprise findings, and challenges,” J. Amer. Chem. Soc., 135, No. 32, 11887–11894 (2013).

    Article  CAS  Google Scholar 

  9. Y. Peng, G. Srinivas, C. E. Wilmer, et al., “Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111,” Chem. Commun., 49, 2992–2994 (2013).

    Article  CAS  Google Scholar 

  10. E. M. Strizhenov, A. A. Fomkin, A. A. Zherdev, and A. A. Pribylov, “Methane adsorption on microporous carbon adsorbent AU-1,” Fizikokhim. Pov. Zash. Mater., 48, No. 6, 521–526 (2012).

    Google Scholar 

  11. E. M. Strizhenov, A. V. Shkolin, A. A. Fomkin, et al., “Low-temperature methane adsorption on microporous carbon adsorbent AU-1,” Fizikokhim. Pov. Zash. Mater., 50, No. 1, 19–25 (2014).

    Google Scholar 

  12. E. Salehi, V. Taghikhani, and C. Ghotbi, “Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25°C,” J. Nat. Gas Chem., 16, No. 4, 415–422 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Strizhenov.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 12, pp. 26–31, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strizhenov, E.M., Zherdev, A.A., Petrochenko, R.V. et al. A Study of Methane Storage Characteristics of Compacted Adsorbent AU-1. Chem Petrol Eng 52, 838–845 (2017). https://doi.org/10.1007/s10556-017-0280-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-017-0280-3

Keywords

Navigation