Skip to main content

Advertisement

Log in

Genome-wide analysis of alternative transcripts in human breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leff SE, Rosenfeld MG, Evans RM (1986) Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu Rev Biochem 55:1091–1117

    Article  CAS  PubMed  Google Scholar 

  2. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  4. Kimura K, Wakamatsu A, Suzuki Y et al (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16:55–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Han H, Irimia M, Ross PJ et al (2013) MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498:241–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Aigner A, Juhl H, Malerczyk C et al (2001) Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumour cell proliferation. Oncogene 20:2101–2111

    Article  CAS  PubMed  Google Scholar 

  8. Claes K, Vandesompele J, Poppe B et al (2002) Pathological splice mutations outside the invariant AG/GT splice sites of BRCA1 exon 5 increase alternative transcript levels in the 5′ end of the BRCA1 gene. Oncogene 21:4171–4175

    Article  CAS  PubMed  Google Scholar 

  9. Ahlborn LB, Dandanell M, Steffensen AY et al (2015) Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic. Breast Cancer Res Treat 150:289–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  11. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed Central  PubMed  Google Scholar 

  12. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486:346–352

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Lapuk A, Marr H, Jakkula L et al (2010) Exon-level microarray analyses identify alternative splicing programs in breast cancer. Mol Cancer Res 8:961–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Solier S, Barb J, Zeeberg BR et al (2010) Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors. Cancer Res 70:8055–8065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bemmo A, Dias C, Rose AA et al (2010) Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS One 5:e11981

    Article  PubMed Central  PubMed  Google Scholar 

  16. Menghi F, Jacques TS, Barenco M et al (2011) Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development. Cancer Res 71:2045–2055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Andre F, Michiels S, Dessen P et al (2009) Exonic expression profiling of breast cancer and benign lesions: a retrospective analysis. Lancet Oncol 10:381–390

    Article  CAS  PubMed  Google Scholar 

  18. Venables JP, Klinck R, Bramard A et al (2008) Identification of alternative splicing markers for breast cancer. Cancer Res 68:9525–9531

    Article  CAS  PubMed  Google Scholar 

  19. Venables JP, Klinck R, Koh C et al (2009) Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 16:670–676

    Article  CAS  PubMed  Google Scholar 

  20. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  21. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  22. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Katz Y, Wang ET, Airoldi EM et al (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gueguen P, Rouault K, Chen JM et al (2013) A missense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS One 8:e74728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cardone J, Le Friec G, Kemper C (2011) CD46 in innate and adaptive immunity: an update. Clin Exp Immunol 164:301–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kim SS, Kim MS, Yoo NJ et al (2013) Frameshift mutations of a chromatin-remodeling gene SMARCC2 in gastric and colorectal cancers with microsatellite instability. APMIS 121:168–169

    Article  CAS  PubMed  Google Scholar 

  29. Shen DW, Pouliot LM, Gillet JP et al (2012) The transcription factor GCF2 is an upstream repressor of the small GTPAse RhoA, regulating membrane protein trafficking, sensitivity to doxorubicin, and resistance to cisplatin. Mol Pharm 9:1822–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  CAS  PubMed  Google Scholar 

  31. Tibshirani R, Hastie T, Narasimhan B et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wen J, Chiba A, Cai X (2010) Computational identification of tissue-specific alternative splicing elements in mouse genes from RNA-Seq. Nucleic Acids Res 38:7895–7907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wen J, Chen Z, Cai X (2013) A biophysical model for identifying splicing regulatory elements and their interactions. PLoS One 8:e54885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ke S, Zhang XH, Chasin LA (2008) Positive selection acting on splicing motifs reflects compensatory evolution. Genome Res 18:533–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441

    Article  PubMed Central  PubMed  Google Scholar 

  36. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform 10:48

    Article  Google Scholar 

  37. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  38. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399

    CAS  PubMed  Google Scholar 

  41. Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nik-Zainal S, Van Loo P, Wedge DC et al (2012) The life history of 21 breast cancers. Cell 149:994–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  44. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  45. Knauer M, Cardoso F, Wesseling J et al (2010) Identification of a low-risk subgroup of HER-2-positive breast cancer by the 70-gene prognosis signature. Br J Cancer 103:1788–1793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kornblihtt AR, Schor IE, Allo M et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Tissue Bank core facility of the Sylvester Comprehensive Cancer Center at the University of Miami for assistance in obtaining breast tumor samples and paired normal controls. Research reported in this publication was partially supported by NIGMS/NIH R01GM104975 and NSF grant CCF-1319981 (to XC), and the Bankhead Coley Cancer Research Program 09BN-05 and NCI/NIH R21CA178675 (to ZC).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Chen or Xiaodong Cai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Toomer, K.H., Chen, Z. et al. Genome-wide analysis of alternative transcripts in human breast cancer. Breast Cancer Res Treat 151, 295–307 (2015). https://doi.org/10.1007/s10549-015-3395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3395-2

Keywords

Navigation