Skip to main content
Log in

Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Correctly determining individual’s resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients. Data were collected from preoperative motor mapping of abductor pollicis brevis (APB), abductor digiti minimi (ADM), and flexor carpi radialis (FCR) muscle representations among these patients. While edema and age at exam in the ADM model only jointly reduced the unexplained variance significantly, the other factors kept in the ADM model (gender, antiepileptic drug intake, and motor deficit) and each of the factors kept in the APB and FCR models independently significantly reduced the unexplained variance. Hence, several clinical parameters contribute to inter-individual rMT variability and should be taken into account during initial and follow-up motor mappings. Thus, the present study adds basic evidence on inter-individual rMT variability, whereby some of the parameters are specific to brain tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

II:

Astrocytoma WHO grade II

III:

Astrocytoma WHO grade III

IV:

Astrocytoma WHO grade IV

ADM:

Abductor digiti minimi muscle

AED:

Antiepileptic drug

APB:

Abductor pollicis brevis muscle

BCS:

Biceps brachii muscle

BMRC:

British Medical Research Council

D:

Deficit

DO:

Dominant

E:

Edema

EMG:

Electromyography

F:

Female

FCR:

Flexor carpi radialis muscle

FLAIR:

Fluid-attenuated inversion recovery

FR:

Frontal

ISI:

Inter-stimulus interval

L:

Levetiracetam

LH:

Left hemisphere

M:

Male

ME:

Metastasis

MEP:

Motor evoked potential

MFG:

Middle frontal gyrus

MRI:

Magnetic resonance imaging

NA:

No AED

ND:

No deficit

NDO:

Non-dominant

NE:

No edema

NK:

AED status not known

NR:

No recurrence

nTMS:

Navigated transcranial magnetic stimulation

PA:

Parietal

PoG:

Postcentral gyrus

PrG:

Precentral gyrus

R:

Recurrence

RH:

Right hemisphere

rMT:

Resting motor threshold

RO:

Rolandic

SA:

Specified AED

SFG:

Superior frontal gyrus

TE:

Temporal

TMS:

Transcranial magnetic stimulation

UA:

Unspecified AED

UDO:

Unknown dominancy

X:

Other entities

Y10:

Exam year 2010

Y11:

Exam year 2011

Y12:

Exam year 2012

Y13:

Exam year 2013

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, 1st edn. Dover Publications, New York

    Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416

    Article  CAS  PubMed  Google Scholar 

  • Awiszus F (2003) TMS and threshold hunting. Suppl Clin Neurophysiol 56:13–23

    Article  PubMed  Google Scholar 

  • Bestmann S, Harrison LM, Blankenburg F, Mars RB, Haggard P, Friston KJ, Rothwell JC (2008) Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. Curr Biol 18:775–780. doi:10.1016/j.cub.2008.04.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus–response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  CAS  PubMed  Google Scholar 

  • Bulubas L et al (2016) Motor areas of the frontal cortex in patients with motor eloquent brain lesions. J Neurosurg. doi:10.3171/2015.11.JNS152103

    PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Conforto AB, Z’Graggen WJ, Kohl AS, Rosler KM, Kaelin-Lang A (2004) Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 115:812–819. doi:10.1016/j.clinph.2003.11.010

    Article  PubMed  Google Scholar 

  • Darling WG, Wolf SL, Butler AJ (2006) Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res 174:376–385. doi:10.1007/s00221-006-0468-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    CAS  PubMed  Google Scholar 

  • Fonkem E, Bricker P, Mungall D, Aceves J, Ebwe E, Tang W, Kirmani B (2013) The role of levetiracetam in treatment of seizures in brain tumor patients. Front Neurol 4:153. doi:10.3389/fneur.2013.00153

    Article  PubMed  PubMed Central  Google Scholar 

  • Forster MT, Senft C, Hattingen E, Lorei M, Seifert V, Szelenyi A (2012) Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study. Acta Neurochir (Wien) 154:1351–1359. doi:10.1007/s00701-012-1403-4

    Article  PubMed  Google Scholar 

  • Fox J (2003) Effects displays in R for generalized linear models. J Stat Softw 8:1–27

    Article  Google Scholar 

  • Frey D et al (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neurooncology 16:1365–1372. doi:10.1093/neuonc/nou110

    Google Scholar 

  • Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113:1249–1257

    Article  PubMed  Google Scholar 

  • Goetz SM, Luber B, Lisanby SH, Peterchev AV (2014) A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimul 7:541–552. doi:10.1016/j.brs.2014.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150. doi:10.1038/35018000

    Article  CAS  PubMed  Google Scholar 

  • Hanajima R et al (2007) Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol 118:2120–2122. doi:10.1016/j.clinph.2007.05.067

    Article  PubMed  Google Scholar 

  • Herbsman T et al (2009) Motor threshold in transcranial magnetic stimulation: the impact of white matter fiber orientation and skull-to-cortex distance. Hum Brain Mapp 30:2044–2055. doi:10.1002/hbm.20649

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess CW, Mills KR, Murray NM (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388:397–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284

    CAS  PubMed  Google Scholar 

  • Imajo Y et al (2016) Effects of differences in age and body height on normal values of central motor conduction time determined by F-waves. J Spinal Cord Med. doi:10.1080/10790268.2015.1117193

    Google Scholar 

  • Iuchi T, Kuwabara K, Matsumoto M, Kawasaki K, Hasegawa Y, Sakaida T (2015) Levetiracetam versus phenytoin for seizure prophylaxis during and early after craniotomy for brain tumours: a phase II prospective, randomised study. J Neurol Neurosurg Psychiatry 86:1158–1162. doi:10.1136/jnnp-2014-308584

    Article  PubMed  Google Scholar 

  • Izumi S, Findley TW, Ikai T, Andrews J, Daum M, Chino N (1995) Facilitatory effect of thinking about movement on motor-evoked potentials to transcranial magnetic stimulation of the brain. Am J Phys Med Rehabil 74:207–213

    Article  CAS  PubMed  Google Scholar 

  • Jaiser SR, Barnes JD, Baker SN, Baker MR (2015) A multiple regression model of normal central and peripheral motor conduction times. Muscle Nerve 51:706–712. doi:10.1002/mus.24427

    Article  PubMed  PubMed Central  Google Scholar 

  • Julkunen P, Saisanen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Kononen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795. doi:10.1016/j.neuroimage.2008.09.040

    Article  PubMed  Google Scholar 

  • Jung NH, Delvendahl I, Kuhnke NG, Hauschke D, Stolle S, Mall V (2010) Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials. Brain Stimul 3:87–94. doi:10.1016/j.brs.2009.10.003

    Article  PubMed  Google Scholar 

  • Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76:502–509

    Article  CAS  PubMed  Google Scholar 

  • Kallioniemi E, Pitkanen M, Saisanen L, Julkunen P (2015) Onset latency of motor evoked potentials in motor cortical mapping with neuronavigated transcranial magnetic stimulation. Open Neurol J 9:62–69. doi:10.2174/1874205X01509010062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423

    Article  CAS  PubMed  Google Scholar 

  • Kiers L, Fernando B, Tomkins D (1997) Facilitatory effect of thinking about movement on magnetic motor-evoked potentials. Electroencephalogr Clin Neurophysiol 105:262–268

    Article  CAS  PubMed  Google Scholar 

  • Kowski AB, Weissinger F, Gaus V, Fidzinski P, Losch F, Holtkamp M (2015) Specific adverse effects of antiepileptic drugs—a true-to-life monotherapy study. Epilepsy Behav 54:150–157. doi:10.1016/j.yebeh.2015.11.009

    Article  PubMed  Google Scholar 

  • Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001. doi:10.3171/2011.12.JNS111524

    Article  PubMed  Google Scholar 

  • Krieg SM, Shiban E, Buchmann N, Meyer B, Ringel F (2013) Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas. Clin Neurophysiol 124:522–527. doi:10.1016/j.clinph.2012.08.011

    Article  PubMed  Google Scholar 

  • Krieg SM et al (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neurooncology 16:1274–1282. doi:10.1093/neuonc/nou007

    Google Scholar 

  • Krieg SM et al (2015) Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer 15:231. doi:10.1186/s12885-015-1258-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauderdale K, Murphy T, Tung T, Davila D, Binder DK, Fiacco TA (2015) Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus. ASN Neuro. doi:10.1177/1759091415605115

    PubMed  PubMed Central  Google Scholar 

  • Livingston SC, Friedlander DL, Gibson BC, Melvin JR (2013) Motor evoked potential response latencies demonstrate moderate correlations with height and limb length in healthy young adults. Neurodiagn J 53:63–78

    PubMed  Google Scholar 

  • Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, Speckmann EJ (2003) Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45:661–671

    Article  CAS  PubMed  Google Scholar 

  • Mbizvo GK, Dixon P, Hutton JL, Marson AG (2014) The adverse effects profile of levetiracetam in epilepsy: a more detailed look. Int J Neurosci 124:627–634. doi:10.3109/00207454.2013.866951

    Article  CAS  PubMed  Google Scholar 

  • Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576

    Article  CAS  PubMed  Google Scholar 

  • Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168

    Article  CAS  PubMed  Google Scholar 

  • Muller V, Birbaumer N, Preissl H, Braun C, Lang F (2002) Effects of water on cortical excitability in humans. Eur J Neurosci 15:528–538

    Article  PubMed  Google Scholar 

  • Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22:233–251, ix. doi:10.1016/j.nec.2011.01.002

  • Niespodziany I, Klitgaard H, Margineanu DG (2001) Levetiracetam inhibits the high-voltage-activated Ca(2+) current in pyramidal neurones of rat hippocampal slices. Neurosci Lett 306:5–8

    Article  CAS  PubMed  Google Scholar 

  • Niskanen E, Julkunen P, Saisanen L, Vanninen R, Karjalainen P, Kononen M (2010) Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study. Hum Brain Mapp 31:1272–1280. doi:10.1002/hbm.20942

    PubMed  Google Scholar 

  • Oliviero A et al (2006) Effects of aging on motor cortex excitability. Neurosci Res 55:74–77. doi:10.1016/j.neures.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  • Paulus W et al (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1:151–163. doi:10.1016/j.brs.2008.06.002

    Article  PubMed  Google Scholar 

  • Picht T (2014) Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol 3:299–310. doi:10.2217/cns.14.25

    Article  CAS  PubMed  Google Scholar 

  • Picht T, Strack V, Schulz J, Zdunczyk A, Frey D, Schmidt S, Vajkoczy P (2012) Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochir (Wien) 154:2075–2081. doi:10.1007/s00701-012-1494-y

    Article  Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613

    Article  CAS  PubMed  Google Scholar 

  • Raudenbush S, Bryk A (2002) Hierarchical linear models, 2nd edn. Sage Publications, Thousand Oaks

    Google Scholar 

  • Reis J et al (2004) Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function—a TMS study. Epilepsy Res 62:41–51. doi:10.1016/j.eplepsyres.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Robles SG, Gatignol P, Lehericy S, Duffau H (2008) Long-term brain plasticity allowing a multistage surgical approach to World Health Organization Grade II gliomas in eloquent areas. J Neurosurg 109:615–624. doi:10.3171/JNS/2008/109/10/0615

    Article  PubMed  Google Scholar 

  • Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107

    Article  PubMed  Google Scholar 

  • Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    Article  PubMed  Google Scholar 

  • Rosler KM, Roth DM, Magistris MR (2008) Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique. Exp Brain Res 187:51–59. doi:10.1007/s00221-008-1278-z

    Article  PubMed  Google Scholar 

  • Rossini PM et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107. doi:10.1016/j.clinph.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  • Ruohonen J, Ilmoniemi RJ (1999) Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl 51:30–40

    CAS  PubMed  Google Scholar 

  • Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiol Clin 40:7–17. doi:10.1016/j.neucli.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Saisanen L et al (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 25:367–372. doi:10.1097/WNP.0b013e31818e7944

    Google Scholar 

  • Schmidt S, Bathe-Peters R, Fleischmann R, Ronnefarth M, Scholz M, Brandt SA (2015) Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp 36:40–49. doi:10.1002/hbm.22611

    Article  PubMed  Google Scholar 

  • Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53:2069–2072

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51:599–603. doi:10.1002/ana.10180

    Article  CAS  PubMed  Google Scholar 

  • Sohn YH, Kaelin-Lang A, Jung HY, Hallett M (2001) Effect of levetiracetam on human corticospinal excitability. Neurology 57:858–863

    Article  CAS  PubMed  Google Scholar 

  • Solinas C, Lee YC, Reutens DC (2008) Effect of levetiracetam on cortical excitability: a transcranial magnetic stimulation study. Eur J Neurol 15:501–505. doi:10.1111/j.1468-1331.2008.02110.x

    Article  CAS  PubMed  Google Scholar 

  • Sollmann N, Hauck T, Obermuller T, Hapfelmeier A, Meyer B, Ringel F, Krieg SM (2013) Inter- and intraobserver variability in motor mapping of the hotspot for the abductor pollicis brevis muscle. BMC Neurosci 14:94. doi:10.1186/1471-2202-14-94

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269

    Article  CAS  PubMed  Google Scholar 

  • Soper DS (2015) A priori sample size calculator for hierarchical multiple regression. http://danielsoper.com/statcalc3/calc.aspx?id=16/. Accessed 2 April 2015

  • Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS (2015) Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. doi:10.3171/2015.5.JNS142833

    PubMed  Google Scholar 

  • Takahashi S, Jussen D, Vajkoczy P, Picht T (2012) Plastic relocation of motor cortex in a patient with LGG (low grade glioma) confirmed by NBS (navigated brain stimulation). Acta Neurochir (Wien) 154:2003–2008; discussion 2008. doi:10.1007/s00701-012-1492-0

  • Takeuchi N, Izumi S (2012) Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat 2012:584727. doi:10.1155/2012/584727

    PubMed  PubMed Central  Google Scholar 

  • Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362. doi:10.3171/2012.5.JNS112124

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobimatsu S, Sun SJ, Fukui R, Kato M (1998) Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol 245:256–261

    Article  CAS  PubMed  Google Scholar 

  • Tranulis C et al (2006) Motor threshold in transcranial magnetic stimulation: comparison of three estimation methods. Neurophysiol Clin 36:1–7. doi:10.1016/j.neucli.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  • van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13:164–171

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171

    Article  PubMed  Google Scholar 

  • Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Muller-Dahlhaus F (2015) TMS and drugs revisited 2014. Clin Neurophysiol 126:1847–1868. doi:10.1016/j.clinph.2014.08.028

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

NS gratefully acknowledges the support of the Graduate School’s Faculty Graduate Center of Medicine at our university.

Funding

The study was financed by Institutional Grants from the Department of Neurosurgery and the Section of Neuroradiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro M. Krieg.

Ethics declarations

Conflict of interest

FR and SK are consultants for BrainLAB AG (Feldkirchen, Germany). SK is Consultant for Nexstim Oy (Helsinki, Finland). The authors declare that they have no conflict of interest regarding the present study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the Ethical Standards of the Institutional and/or National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Nico Sollmann and Noriko Tanigawa have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sollmann, N., Tanigawa, N., Bulubas, L. et al. Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping. Brain Topogr 30, 98–121 (2017). https://doi.org/10.1007/s10548-016-0536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0536-9

Keywords

Navigation