Skip to main content
Log in

Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the “all-in-one” fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • T. Agarwal, S.N. Narayana, K. Pal, K. Pramanik, S. Giri, I. Banerjee, Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 75, 409–417 (2015)

    Article  Google Scholar 

  • C.S. Asbill, B.B. Michniak, Percutaneous penetration enhancers: Local versus transdermal activity. Pharm. Sci. Technol. Today 3, 36–41 (2000)

    Article  Google Scholar 

  • M.M. Badran, J. Kuntsche, A. Fahr, Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 36, 511–523 (2009)

    Article  Google Scholar 

  • R.L. Bronaugh, H.I. Maibach, Percutaneous absorption : Drugs, cosmetics, mechanisms, methodology, 4th edn. (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  • Y.C. Chen, H.O. Ho, D.Z. Liu, W.S. Siow, M.T. Sheu, Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS One 10, e0116914 (2015)

    Article  Google Scholar 

  • K. Cheung, T. Han, D.B. Das, Effect of force of microneedle insertion on the permeability of insulin in skin. J. Diabetes. Sci. Technol. 8, 444–452 (2014)

    Article  Google Scholar 

  • S. Chillo, J. Laverse, P.M. Falcone, M.A. Del Nobile, Effect of carboxymethylcellulose and pregelatinized corn starch on the quality of amaranthus spaghetti. J. Food Eng. 83, 492–500 (2007)

    Article  Google Scholar 

  • L.Y. Chu, M.R. Prausnitz, Separable arrowhead microneedles. J. Control. Release 149, 242–249 (2011)

    Article  Google Scholar 

  • Z. Ding, F.J. Verbaan, M. Bivas-Benita, L. Bungener, A. Huckriede, D.J. van den Berg, G. Kersten, J.A. Bouwstra, Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J. Control. Release 136, 71–78 (2009)

    Article  Google Scholar 

  • J. Hadgraft, J. Peck, D.G. Williams, W.J. Pugh, G. Allan, Mechanisms of action of skin penetration enhancers/retarders: Azone and analogues. Int. J. Pharm. 141, 17–25 (1996)

    Article  Google Scholar 

  • U.O. Hafeli, A. Mokhtari, D. Liepmann, B. Stoeber, In vivo evaluation of a microneedle-based miniature syringe for intradermal drug delivery. Biomed. Microdevices 11, 943–950 (2009)

    Article  Google Scholar 

  • T. Higashiyama, Novel functions and applications of trehalose. Pure Appl. Chem. 74, 1263–1269 (2002)

    Article  Google Scholar 

  • S. Hirobe, H. Azukizawa, T. Hanafusa, K. Matsuo, Y.S. Quan, F. Kamiyama, I. Katayama, N. Okada, S. Nakagawa, Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 57, 50–58 (2015)

    Article  Google Scholar 

  • H. Jeong, K.B. Shepard, G.E. Purdum, Y.L. Guo, Y.L. Loo, C.B. Arnold, R.D. Priestley, Additive growth and crystallization of polymer films. Macromolecules 49, 2860–2867 (2016)

    Article  Google Scholar 

  • S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, M.R. Prausnitz, Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001)

    Article  Google Scholar 

  • C.J. Ke, Y.J. Lin, Y.C. Hu, W.L. Chiang, K.J. Chen, W.C. Yang, H.L. Liu, C.C. Fu, H.W. Sung, Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials 33, 5156–5165 (2012)

    Article  Google Scholar 

  • Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012)

    Article  Google Scholar 

  • S. Kommareddy, B.C. Baudner, S. Oh, S.Y. Kwon, M. Singh, D.T. O'Hagan, Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J. Pharm. Sci. 101, 1021–1027 (2012)

    Article  Google Scholar 

  • R. Langer, Drug delivery. Drugs on target. Science 293, 58–59 (2001)

    Article  Google Scholar 

  • J.W. Lee, J.H. Park, M.R. Prausnitz, Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113–2124 (2008)

    Article  Google Scholar 

  • K. Lee, C.Y. Lee, H. Jung, Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32, 3134–3140 (2011)

    Article  Google Scholar 

  • I.C. Lee, W.M. Lin, J.C. Shu, S.W. Tsai, C.H. Chen, M.T. Tsai, Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. A 105, 84–93 (2017)

    Article  Google Scholar 

  • G. Li, A. Badkar, S. Nema, C.S. Kolli, A.K. Banga, In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int. J. Pharm. 368, 109–115 (2009)

    Article  Google Scholar 

  • W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C.L. Teng, G.E. Hardee, P.E. Daddona, Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18, 1789–1793 (2001)

    Article  Google Scholar 

  • S. Liu, M.N. Jin, Y.S. Quan, F. Kamiyama, H. Katsumi, T. Sakane, A. Yamamoto, The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Control. Release 161, 933–941 (2012)

    Article  Google Scholar 

  • W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21, 947–952 (2004)

    Article  Google Scholar 

  • C.J. Martin, C.J. Allender, K.R. Brain, A. Morrissey, J.C. Birchall, Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 158, 93–101 (2012)

    Article  Google Scholar 

  • D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 100, 13755–13760 (2003)

    Article  Google Scholar 

  • K. Migalska, D.I. Morrow, M.J. Garland, R. Thakur, A.D. Woolfson, R.F. Donnelly, Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm. Res. 28, 1919–1930 (2011)

    Article  Google Scholar 

  • J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis, N.G. Harvey, Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8, 415–419 (2002)

    Article  Google Scholar 

  • Y.H. Park, S.K. Ha, I. Choi, K.S. Kim, J. Park, N. Choi, B. Kim, J.H. Sung, Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol. Bioprocess Eng. 21, 110–118 (2016)

    Article  Google Scholar 

  • D. Pasqui, P. Torricelli, M. De Cagna, M. Fini, R. Barbucci, Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J. Biomed. Mater. Res. A 102, 1568–1579 (2014)

    Article  Google Scholar 

  • R.J. Pettis, A.J. Harvey, Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 3, 357–371 (2012)

    Article  Google Scholar 

  • M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)

    Article  Google Scholar 

  • A.P. Raphael, T.W. Prow, M.L. Crichton, X. Chen, G.J. Fernando, M.A. Kendall, Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 6, 1785–1793 (2010)

    Article  Google Scholar 

  • S.P. Sullivan, N. Murthy, M.R. Prausnitz, Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 20, 933–938 (2008)

    Article  Google Scholar 

  • S.P. Sullivan, D.G. Koutsonanos, M. Del Pilar Martin, J.W. Lee, V. Zarnitsyn, S.O. Choi, N. Murthy, R.W. Compans, I. Skountzou, M.R. Prausnitz, Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010)

    Article  Google Scholar 

  • T.M. Tuan-Mahmood, M.T. McCrudden, B.M. Torrisi, E. McAlister, M.J. Garland, T.R. Singh, R.F. Donnelly, Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 50, 623–637 (2013)

    Article  Google Scholar 

  • A.M. Wokovich, S. Prodduturi, W.H. Doub, A.S. Hussain, L.F. Buhse, Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64, 1–8 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University System of Taipei Joint Research Program for funding support (NTUT-TMU-103-03; USTP-NTUT-TMU-105-04). We also thank the National Laboratory Animal Center for their help in carrying out the skin penetration studies in mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Yuan Hwa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwa, KY., Chang, V.H.S., Cheng, YY. et al. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery. Biomed Microdevices 19, 84 (2017). https://doi.org/10.1007/s10544-017-0224-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0224-x

Keywords

Navigation