Skip to main content
Log in

Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Transdermal drug delivery system (TDDS) may provide a more reliable method of drug delivery than oral delivery by avoiding gut absorption and first-pass metabolism, but needs a method for efficiently crossing the epidermal barrier. To enhance the delivery through the skin, we have developed a biocompatible, dissolvable microneedle array made from carboxymethyl cellulose (CMC). Using laser ablation for creating the mold greatly improved the efficiency and reduced the cost of microneedle fabrication. Mixing CMC with amylopectin (AP) enhanced the mechanical and tunable dissolution properties of the microneedle for controlled release of model compounds. Using the CMC microneedle array, we observed significant enhancement in the skin permeability of a fluorescent model compound, and also increase in the anti-oxidant activity of ascorbic acid after crossing the skin. Our dissolvable microneedle array provides a new and biocompatible method for delivery of drugs and cosmetic compounds through the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kermode, M. (2004) Unsafe injections in low-income country health settings: Need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot. Int. 19: 95–103.

    Article  Google Scholar 

  2. Prausnitz, M. R. (2004) Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56: 581–587.

    Article  CAS  Google Scholar 

  3. Prausnitz, M. R., S. Mitragotri, and R. Langer (2004) Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3: 115–124.

    Article  CAS  Google Scholar 

  4. Kalia, Y. N., A. Naik, J. Garrison, and R. H. Guy (2004) Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56: 619–658.

    Article  CAS  Google Scholar 

  5. Denet, A. R., R. Vanbever, and V. Preat (2004) Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56: 659–674.

    Article  CAS  Google Scholar 

  6. Kim, Y. C., J. H. Park, and M. R. Prausnitz (2012) Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64: 1547–1568.

    Article  CAS  Google Scholar 

  7. Stoeber, B. and D. Liepmann (2000) Fluid injection through outof-plane microneedles. 1 st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. October 12–14. Lyon, FRANCE.

    Google Scholar 

  8. Smart, W. H. and K. Subramanian (2000) The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther. 2: 549–59.

    Article  CAS  Google Scholar 

  9. Chen, J., K. D. Wise, J. F. Hetke, and S. C. Bledsoe (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44: 760–769.

    Article  CAS  Google Scholar 

  10. Lin, W., M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. L. Teng, G. E. Hardee, and P. E. Daddona (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18: 1789–1793.

    Article  CAS  Google Scholar 

  11. Martanto, W., S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill, and M. R. Prausnitz (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21: 947–952.

    Article  CAS  Google Scholar 

  12. Matriano, J. A., M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam, and P. E. Daddona (2002) Macroflux microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharm. Res. 19: 63–70.

    Article  CAS  Google Scholar 

  13. Park, J. H., M. G. Allen, and M. R. Prausnitz (2006) Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23: 1008–1019.

    Article  CAS  Google Scholar 

  14. Kochhar, J. S., W. X. Lim, S. Zou, W. Y. Foo, J. Pan, and L. Kang (2013) Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 10: 4272–4280.

    Article  CAS  Google Scholar 

  15. Wang, P. C., B. A. Wester, S. Rajaraman, S. J. Paik, S. H. Kim, and M. G. Allen (2009) Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009: 7026–7029.

    Google Scholar 

  16. Kommareddy, S., B. C. Baudner, S. Oh, S. Y. Kwon, M. Singh, and D. T. O’Hagan (2012) Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J. Pharm. Sci. 101: 1021–1027.

    Article  CAS  Google Scholar 

  17. Bediz, B., E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos, L. D. Falo, and O. B. Ozdoganlar (2014) Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm. Res. 31: 117–135.

    Article  CAS  Google Scholar 

  18. Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 11: 389–392.

    Article  CAS  Google Scholar 

  19. Costello, C. M., J. Hongpeng, S. Shaffiey, J. Yu, N. K. Jain, D. Hackam, and J. C. March (2014) Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 111: 1222–1232.

    Article  CAS  Google Scholar 

  20. Yu, J., S. Peng, D. Luo, and J. C. March (2012) In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109: 2173–2178.

    Article  CAS  Google Scholar 

  21. Park, Y., J. Park, G. Chu, K. Kim, J. Sung, and B. Kim (2015) Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol. Bioproc. Eng. 20: 543–549.

    Article  CAS  Google Scholar 

  22. Lee, J. W., J. H. Park, and M. R. Prausnitz (2008) Dissolving microneedles for transdermal drug delivery. Biomat. 29: 2113–2124.

    Article  CAS  Google Scholar 

  23. Park, J. H., M. G. Allen, and M. R. Prausnitz (2005) Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Rel. 104: 51–66.

    Article  CAS  Google Scholar 

  24. Kim, M., H. Yang, H. Kim, H. Jung, and H. Jung (2014) Novel cosmetic patches for wrinkle improvement: Retinyl retinoateand ascorbic acid-loaded dissolving microneedles. Int. J. Cosmet. Sci. 36: 207–212.

    Article  CAS  Google Scholar 

  25. Li, C.G., C.Y. Lee, K. Lee, and H. Jung (2013) An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdev. 15: 17–25.

    Article  Google Scholar 

  26. Crookes, B. A., S. M. Cohn, H. Bonet, E. A. Burton, J. Nelson, M. Majetschak, A. J. Varon, J. M. Linden, and K. G. Proctor (2004) Building a better fluid for emergency resuscitation of traumatic brain injury. J. Trauma. 57: 547–554.

    Article  Google Scholar 

  27. Feng, X. H. P. R., and M. Leduc (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Indust. Eng. Chem. Res. 45: 6665–6671.

    Article  CAS  Google Scholar 

  28. Kalichevsky, M. T., E. M. Jaroszkiewicz, S. Ablett, J. M. V. Blanshard, and P. J. Lillford (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohyd. Poly. 18: 77–88.

    Article  CAS  Google Scholar 

  29. Davis, S. P., B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz (2004) Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 37: 1155–1163.

    Article  Google Scholar 

  30. Casalini, T., F. Rossi, S. Lazzari, G. Perale, and M. Masi (2014) Mathematical modeling of PLGA MICROparticles: From polymer degradation to drug release. Mol. Pharm. 11: 4036–4048.

    Article  CAS  Google Scholar 

  31. Kim, H. M., Y. Y. Lim, J. H. An, M. N. Kim, and B. J. Kim (2012) Transdermal drug delivery using disk microneedle rollers in a hairless rat model. Int. J. Dermatol. 51: 859–863.

    Article  CAS  Google Scholar 

  32. Gomaa, Y. A., L. K. El-Khordagui, M. J. Garland, R. F. Donnelly, F. McInnes, and V. M. Meidan (2012) Effect of microneedle treatment on the skin permeation of a nanoencapsulated dye. J. Pharm. Pharmacol. 64: 1592–1602.

    Article  CAS  Google Scholar 

  33. Panich, U., V. Tangsupa-a-nan, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp (2011) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch. Pharm. Res. 34: 811–20.

    Article  CAS  Google Scholar 

  34. Gallarate, M., M. E. Carlotti, M. Trotta, and S. Bovo (1999) On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int. J. Pharm. 188: 233–241.

    Article  CAS  Google Scholar 

  35. Burke, K. E. (2007) Interaction of vitamins C and E as better cosmeceuticals. Dermatol. Ther. 20: 314–321.

    Article  Google Scholar 

  36. Ito, Y., T. Maeda, K. Fukushima, N. Sugioka, and K. Takada (2010) Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chem. Pharm. Bull. 58: 458–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumsang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YH., Ha, S.K., Choi, I. et al. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol Bioproc E 21, 110–118 (2016). https://doi.org/10.1007/s12257-015-0634-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0634-7

Keywords

Navigation