Skip to main content

Advertisement

Log in

Role of environmental factors in the pathogenesis of Crohn’s disease: a critical review

  • Review
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

To review role of environmental factors in the pathogenesis of Crohn’s disease.

Methods

We systematically reviewed trials and systematic reviews using PubMed and Web of science databases. Here, we review the current information on the causative factors and mechanisms of CD, including smoking, exercise, diet, animal protein, breastfeeding, history of childhood infection and vaccination, oral contraceptives, and antibiotics of CD. We also highlight important knowledge gaps that need to be filled in order to advance the field of CD research.

Results

Epidemiological studies have indicated the significance of environmental factors in the disease behavior and outcome of Crohn’s disease (CD). There are a few recognized environmental factors, such as cigarette smoking, exercise, dietary habits, and breastfeeding, which are associated with the pathogenesis of CD. These factors are hypothesized to change the epithelial barrier function, which disturbs both the innate and adaptive immune systems and the intestinal flora. However, the effect of several risk factors, such as appendectomy and pharmaceutical use, differs across several studies, indicating the need for more rigorous research. Furthermore, few studies have examined effective interventions based on environmental factors that can improve disease outcomes. Recent studies have indicated that the pathogenesis of CD is related to environmental and genetic factors.

Conclusion

We review the current information on the causative factors and mechanisms of CD, including smoking, exercise, diet, animal protein, breastfeeding, history of childhood infection and vaccination, oral contraceptives, and antibiotics of CD. However, further studies are needed to understand knowledge gaps in the field of CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng JJ, Zhu XS, Huangfu Z, Shi XH, Guo ZR (2010) Prevalence and incidence rates of Crohn's disease in mainland China: a meta-analysis of 55 years of research. J Dig Dis 11(3):161–166. https://doi.org/10.1111/j.1751-2980.2010.00431.x

    Article  PubMed  Google Scholar 

  2. Cao Y, Shen J, Ran ZH (2014) Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract 2014:872725–872725. https://doi.org/10.1155/2014/872725

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140(6):1785–1794. https://doi.org/10.1053/j.gastro.2011.01.055

    Article  PubMed  Google Scholar 

  4. Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, Wong TC, Leung VK, Tsang SW, Yu HH, Li MF, Ng KK, Kamm MA, Studd C, Bell S, Leong R, de Silva HJ, Kasturiratne A, Mufeena MN, Ling KL, Ooi CJ, Tan PS, Ong D, Goh KL, Hilmi I, Pisespongsa P, Manatsathit S, Rerknimitr R, Aniwan S, Wang YF, Ouyang Q, Zeng Z, Zhu Z, Chen MH, Hu PJ, Wu K, Wang X, Simadibrata M, Abdullah M, Wu JC, Sung JJ, Chan FK (2013) Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology 145(1):158–165.e152. https://doi.org/10.1053/j.gastro.2013.04.007

    Article  PubMed  Google Scholar 

  5. Vegh Z, Kurti Z, Lakatos PL (2017) Epidemiology of inflammatory bowel diseases from West to East. J Dig Dis 18(2):92–98. https://doi.org/10.1111/1751-2980.12449

    Article  PubMed  Google Scholar 

  6. Leombruno JP, Nguyen GC, Grootendorst P, Juurlink D, Einarson T (2011) Hospitalization and surgical rates in patients with Crohn’s disease treated with infliximab: a matched analysis. Pharmacoepidemiol Drug Saf 20(8):838–848. https://doi.org/10.1002/pds.2132

    Article  PubMed  Google Scholar 

  7. Zorzi F, Calabrese E, Monteleone G (2015) Pathogenic aspects and therapeutic avenues of intestinal fibrosis in Crohn’s disease. Clin Sci (Lond Engl: 1979) 129(12):1107–1113. https://doi.org/10.1042/cs20150472

    Article  CAS  Google Scholar 

  8. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, Gonzalez A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392. https://doi.org/10.1016/j.chom.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499. https://doi.org/10.1053/j.gastro.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142(1):46–54.e42; quiz e30. https://doi.org/10.1053/j.gastro.2011.10.001

    Article  PubMed  Google Scholar 

  12. Tsironi E, Feakins RM, Probert CS, Rampton DS, Phil D (2004) Incidence of inflammatory bowel disease is rising and abdominal tuberculosis is falling in Bangladeshis in East London, United Kingdom. Am J Gastroenterol 99(9):1749–1755. https://doi.org/10.1111/j.1572-0241.2004.30445.x

    Article  PubMed  Google Scholar 

  13. Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517

    Article  Google Scholar 

  14. Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Prescott NJ, Pessoa-Lopes P, Mathew CG, Sanderson J, Hart AL, Kamm MA, Knight SC, Forbes A, Stagg AJ, Lindsay JO, Whelan K (2012) Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis 18(6):1092–1100. https://doi.org/10.1002/ibd.21864

    Article  PubMed  Google Scholar 

  15. Verschuere S, Bracke KR, Demoor T, Plantinga M, Verbrugghe P, Ferdinande L, Lambrecht BN, Brusselle GG, Cuvelier CA (2011) Cigarette smoking alters epithelial apoptosis and immune composition in murine GALT. Lab Investig 91(7):1056–1067. https://doi.org/10.1038/labinvest.2011.74

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388. https://doi.org/10.1038/nature01339

    Article  CAS  PubMed  Google Scholar 

  17. Bergeron V, Grondin V, Rajca S, Maubert MA, Pigneur B, Thomas G, Trugnan G, Beaugerie L, Cosnes J, Masliah J, Sokol H, Seksik P, Bachelet M (2012) Current smoking differentially affects blood mononuclear cells from patients with Crohn’s disease and ulcerative colitis: relevance to its adverse role in the disease. Inflamm Bowel Dis 18(6):1101–1111. https://doi.org/10.1002/ibd.21889

    Article  PubMed  Google Scholar 

  18. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515. https://doi.org/10.1038/nature10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bilski J, Brzozowski B, Mazur-Bialy A, Sliwowski Z, Brzozowski T (2014) The role of physical exercise in inflammatory bowel disease. Biomed Res Int 2014:429031–429031. https://doi.org/10.1155/2014/429031

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iida T, Onodera K, Nakase H (2017) Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 23(11):1944–1953. https://doi.org/10.3748/wjg.v23.i11.1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lykouras D, Karkoulias K, Triantos C Physical exercise in patients with inflammatory bowel disease. (1876-4479 (Electronic))

  22. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, Fuchs CS, Willett WC, Richter JM, Chan AT (2013) A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145(5):970–977. https://doi.org/10.1053/j.gastro.2013.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graham TO, Kandil HM (2002) Nutritional factors in inflammatory bowel disease. Gastroenterol Clin N Am 31(1):203–218

    Article  Google Scholar 

  25. Ng SC (2016) Emerging trends of inflammatory bowel disease in Asia. Gastroenterol Hepatol 12(3):193–196

    Google Scholar 

  26. Scoville EA, Allaman MM, Adams DW, Motley AK, Peyton SC, Ferguson SL, Horst SN, Williams CS, Beaulieu DB, Schwartz DA, Wilson KT, Coburn LA (2019) Serum polyunsaturated fatty acids correlate with serum cytokines and clinical disease activity in Crohn’s disease. Sci Rep 9(1):2882–2882. https://doi.org/10.1038/s41598-019-39232-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes R, Magee EA, Bingham S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol 1(2):51–58

    CAS  PubMed  Google Scholar 

  28. Geypens B, Claus D, Evenepoel P, Hiele M, Maes B, Peeters M, Rutgeerts P, Ghoos Y (1997) Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41(1):70–76. https://doi.org/10.1136/gut.41.1.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeurink PV, van Bergenhenegouwen J, Jimenez E, Knippels LM, Fernandez L, Garssen J, Knol J, Rodriguez JM, Martin R (2013) Human milk: a source of more life than we imagine. Benefic Microbes 4(1):17–30. https://doi.org/10.3920/bm2012.0040

    Article  CAS  Google Scholar 

  30. Tannock GW, Lawley B, Munro K, Gowri Pathmanathan S, Zhou SJ, Makrides M, Gibson RA, Sullivan T, Prosser CG, Lowry D, Hodgkinson AJ (2013) Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol 79(9):3040–3048. https://doi.org/10.1128/aem.03910-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185(5):385–394. https://doi.org/10.1503/cmaj.121189

    Article  PubMed  PubMed Central  Google Scholar 

  32. Walker A (2010) Breast milk as the gold standard for protective nutrients. J Pediatr 156(2 Suppl):S3–S7. https://doi.org/10.1016/j.jpeds.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  33. Shaw SY, Blanchard JF, Bernstein CN (2013) Association between early childhood otitis media and pediatric inflammatory bowel disease: an exploratory population-based analysis. J Pediatr 162(3):510–514. https://doi.org/10.1016/j.jpeds.2012.08.037

    Article  PubMed  Google Scholar 

  34. Brandtzaeg P (2010) The mucosal immune system and its integration with the mammary glands. J Pediatr 156(2 Suppl):S8–S15. https://doi.org/10.1016/j.jpeds.2009.11.014

    Article  CAS  PubMed  Google Scholar 

  35. Mantis NJ, Rol N, Corthesy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4(6):603–611. https://doi.org/10.1038/mi.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newburg DS, Walker WA (2007) Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 61(1):2–8. https://doi.org/10.1203/01.pdr.0000250274.68571.18

    Article  CAS  PubMed  Google Scholar 

  37. Basson A, Swart R, Jordaan E, Mazinu M, Watermeyer G (2014) The association between childhood environmental exposures and the subsequent development of Crohn’s disease in the Western Cape, South Africa. PLoS One 9(12):e115492. https://doi.org/10.1371/journal.pone.0115492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blumer N, von Mutius E, Bufe A, Gatermann S, Renz H, Holst O, Heine H (2007) Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 119(6):1514–1521. https://doi.org/10.1016/j.jaci.2007.03.023

    Article  PubMed  Google Scholar 

  39. Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, Martin PG, Theodorou V, Fioramonti J, Houdeau E (2010) Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc Natl Acad Sci U S A 107(1):448–453. https://doi.org/10.1073/pnas.0907697107

    Article  PubMed  Google Scholar 

  40. Looijer-van Langen M, Hotte N, Dieleman LA, Albert E, Mulder C, Madsen KL (2011) Estrogen receptor-beta signaling modulates epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 300(4):G621–G626. https://doi.org/10.1152/ajpgi.00274.2010

    Article  CAS  PubMed  Google Scholar 

  41. Cutolo M, Capellino S, Straub RH (2008) Oestrogens in rheumatic diseases: friend or foe? Rheumatology (Oxford, England) 47(Suppl 3):iii2–iii5. https://doi.org/10.1093/rheumatology/ken150

    Article  Google Scholar 

  42. Khalili H, Ananthakrishnan AN, Konijeti GG, Higuchi LM, Fuchs CS, Richter JM, Tworoger SS, Hankinson SE, Chan AT (2015) Endogenous levels of circulating androgens and risk of Crohn’s disease and ulcerative colitis among women: a nested case-control study from the Nurses’ Health Study cohorts. Inflamm Bowel Dis 21(6):1378–1385. https://doi.org/10.1097/mib.0000000000000385

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shaw SY, Blanchard JF, Bernstein CN (2010) Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 105(12):2687–2692. https://doi.org/10.1038/ajg.2010.398

    Article  PubMed  Google Scholar 

  44. Cosnes J (2010) Smoking, physical activity, nutrition and lifestyle: environmental factors and their impact on IBD. Digest Dis (Basel, Switzerland) 28(3):411–417. https://doi.org/10.1159/000320395

    Article  Google Scholar 

  45. Picco MF, Bayless TM (2003) Tobacco consumption and disease duration are associated with fistulizing and stricturing behaviors in the first 8 years of Crohn’s disease. Am J Gastroenterol 98(2):363–368. https://doi.org/10.1111/j.1572-0241.2003.07240.x

    Article  PubMed  Google Scholar 

  46. Sutherland LR, Ramcharan S, Bryant H, Fick G (1990) Effect of cigarette smoking on recurrence of Crohn’s disease. Gastroenterology 98(5 Pt 1):1123–1128

    Article  CAS  Google Scholar 

  47. To N, Gracie DJ, Ford AC (2016) Systematic review with meta-analysis: the adverse effects of tobacco smoking on the natural history of Crohn’s disease. Aliment Pharmacol Ther 43(5):549–561. https://doi.org/10.1111/apt.13511

    Article  PubMed  Google Scholar 

  48. Cosnes J (2004) Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol 18(3):481–496. https://doi.org/10.1016/j.bpg.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  49. Seksik P, Nion-Larmurier I, Sokol H, Beaugerie L, Cosnes J (2009) Effects of light smoking consumption on the clinical course of Crohn’s disease. Inflamm Bowel Dis 15(5):734–741. https://doi.org/10.1002/ibd.20828

    Article  PubMed  Google Scholar 

  50. Nunes T, Etchevers MJ, Domenech E, Garcia-Sanchez V, Ber Y, Penalva M, Merino O, Nos P, Garcia-Planella E, Casbas AG, Esteve M, Taxonera Samso C, Montoro Huguet M, Gisbert JP, Martin Arranz MD, Garcia-Sepulcre MF, Barreiro-de Acosta M, Beltran B, Alcaide Suarez N, Saro Gismera C, Cabriada JL, Canas-Ventura A, Gomollon F, Panes J (2013) Smoking does influence disease behaviour and impacts the need for therapy in Crohn’s disease in the biologic era. Aliment Pharmacol Ther 38(7):752–760. https://doi.org/10.1111/apt.12440

    Article  CAS  PubMed  Google Scholar 

  51. Lakatos PL, Vegh Z, Lovasz BD, David G, Pandur T, Erdelyi Z, Szita I, Mester G, Balogh M, Szipocs I, Molnar C, Komaromi E, Golovics PA, Mandel M, Horvath A, Szathmari M, Kiss LS, Lakatos L (2013) Is current smoking still an important environmental factor in inflammatory bowel diseases? Results from a population-based incident cohort. Inflamm Bowel Dis 19(5):1010–1017. https://doi.org/10.1097/MIB.0b013e3182802b3e

    Article  PubMed  Google Scholar 

  52. Fricker M, Goggins BJ, Mateer S, Jones B, Kim RY, Gellatly SL, Jarnicki AG, Powell N, Oliver BG, Radford-Smith G, Talley NJ, Walker MM, Keely S, Hansbro PM (2018) Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight 3(3):e94040. https://doi.org/10.1172/jci.insight.94040

    Article  PubMed Central  Google Scholar 

  53. van der Heide F, Dijkstra A, Weersma RK, Albersnagel FA, van der Logt EM, Faber KN, Sluiter WJ, Kleibeuker JH, Dijkstra G (2009) Effects of active and passive smoking on disease course of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 15(8):1199–1207. https://doi.org/10.1002/ibd.20884

    Article  PubMed  Google Scholar 

  54. Cosnes J, Beaugerie L, Carbonnel F, Gendre JP (2001) Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology 120(5):1093–1099. https://doi.org/10.1053/gast.2001.23231

    Article  CAS  PubMed  Google Scholar 

  55. Higuchi LM, Khalili H, Chan AT, Richter JM, Bousvaros A, Fuchs CS (2012) A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol 107(9):1399–1406. https://doi.org/10.1038/ajg.2012.196

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shanahan ER, Shah A, Koloski N, Walker MM, Talley NJ, Morrison M, Holtmann GJ (2018) Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome 6(1):150–150. https://doi.org/10.1186/s40168-018-0531-3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Murugananthan A, Tozer P, Bernardo D, Hart A, Knight S, Whelan K, Al-Hassi HO, Arebi N (2012) P464 Dysbiosis in mucosally adherent microbiota at surgery and in post-endoscopic recurrence at 6 and 12 months a longitudinal prospective evaluation in Crohn’s disease. J Crohn's Colitis 6(Supplement 1):S194. https://doi.org/10.1016/S1873-9946(12)60483-8

    Article  Google Scholar 

  58. Thomas GA, Rhodes J, Ingram JR (2005) Mechanisms of disease: nicotine--a review of its actions in the context of gastrointestinal disease. Nat Clin Pract Gastroenterol Hepatol 2(11):536–544. https://doi.org/10.1038/ncpgasthep0316

    Article  CAS  PubMed  Google Scholar 

  59. Shen L, Su L, Turner JR (2009) Mechanisms and functional implications of intestinal barrier defects. Digest Dis (Basel, Switzerland) 27(4):443–449. https://doi.org/10.1159/000233282

    Article  Google Scholar 

  60. Maseda D, Candando KM, Smith SH, Kalampokis I, Weaver CT, Plevy SE, Poe JC, Tedder TF (2013) Peritoneal cavity regulatory B cells (B10 cells) modulate IFN-γ+CD4+ T cell numbers during colitis development in mice. J Immunol (Baltimore, Md : 1950) 191(5):2780–2795. https://doi.org/10.4049/jimmunol.1300649

    Article  CAS  Google Scholar 

  61. Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, Paglinco SR, Antonioli L, Rolandelli RH (2017) Crohn’s disease and ulcerative colitis show unique cytokine profiles. Cureus 9(4):e1177–e1177. https://doi.org/10.7759/cureus.1177

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mendall MA, Jensen CB, Sørensen TIA, Ängquist LH, Jess T (2019) Body mass index in young men and risk of inflammatory bowel disease through adult life: a population-based Danish cohort study. Sci Rep 9(1):6360–6360. https://doi.org/10.1038/s41598-019-42642-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Heide F, Nolte IM, Kleibeuker JH, Wijmenga C, Dijkstra G, Weersma RK (2010) Differences in genetic background between active smokers, passive smokers, and non-smokers with Crohn’s disease. Am J Gastroenterol 105(5):1165–1172. https://doi.org/10.1038/ajg.2009.659

    Article  PubMed  Google Scholar 

  64. Ananthakrishnan AN, Nguyen DD, Sauk J, Yajnik V, Xavier RJ (2014) Genetic polymorphisms in metabolizing enzymes modifying the association between smoking and inflammatory bowel diseases. Inflamm Bowel Dis 20(5):783–789. https://doi.org/10.1097/mib.0000000000000014

    Article  PubMed  PubMed Central  Google Scholar 

  65. Doecke JD, Simms LA, Zhao ZZ, Roberts RL, Fowler EV, Croft A, Lin A, Huang N, Whiteman DC, Florin TH, Barclay ML, Merriman TR, Gearry RB, Montgomery GW, Radford-Smith GL (2015) Smoking behaviour modifies IL23r-associated disease risk in patients with Crohn’s disease. J Gastroenterol Hepatol 30(2):299–307. https://doi.org/10.1111/jgh.12674

    Article  CAS  PubMed  Google Scholar 

  66. Sonnenberg A, Walker JT (2012) Occupational mortality associated with inflammatory bowel disease in the United States 1984-1998. Inflamm Bowel Dis 18(7):1249–1253. https://doi.org/10.1002/ibd.21807

    Article  PubMed  Google Scholar 

  67. Sonnenberg A (1990) Occupational distribution of inflammatory bowel disease among German employees. Gut 31(9):1037–1040

    Article  CAS  Google Scholar 

  68. Persson PG, Leijonmarck CE, Bernell O, Hellers G, Ahlbom A (1993) Risk indicators for inflammatory bowel disease. Int J Epidemiol 22(2):268–272

    Article  CAS  Google Scholar 

  69. Khalili H, Ananthakrishnan AN, Konijeti GG, Liao X, Higuchi LM, Fuchs CS, Spiegelman D, Richter JM, Korzenik JR, Chan AT (2013) Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses’ Health Study cohorts. BMJ (Clin Res ed) 347:f6633. https://doi.org/10.1136/bmj.f6633

    Article  Google Scholar 

  70. Albenberg LG, Lewis JD, Wu GD (2012) Food and the gut microbiota in inflammatory bowel diseases: a critical connection. Curr Opin Gastroenterol 28(4):314–320. https://doi.org/10.1097/MOG.0b013e328354586f

    Article  CAS  PubMed  Google Scholar 

  71. Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL (2010) Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 16(1):137–151. https://doi.org/10.1002/ibd.20968

    Article  PubMed  Google Scholar 

  72. Asakura H, Suzuki K, Kitahora T, Morizane T (2008) Is there a link between food and intestinal microbes and the occurrence of Crohn’s disease and ulcerative colitis? J Gastroenterol Hepatol 23(12):1794–1801. https://doi.org/10.1111/j.1440-1746.2008.05681.x

    Article  PubMed  Google Scholar 

  73. Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 106(4):563–573. https://doi.org/10.1038/ajg.2011.44

    Article  CAS  PubMed  Google Scholar 

  74. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F (2010) Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol 105(10):2195–2201. https://doi.org/10.1038/ajg.2010.192

    Article  CAS  PubMed  Google Scholar 

  75. Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, Inaba Y, Miyake Y, Sasaki S, Okamoto K, Kobashi G, Washio M, Yokoyama T, Date C, Tanaka H (2005) Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis 11(2):154–163

    Article  Google Scholar 

  76. Hlavaty T, Toth J, Koller T, Krajcovicova A, Oravcova S, Zelinkova Z, Huorka M (2013) Smoking, breastfeeding, physical inactivity, contact with animals, and size of the family influence the risk of inflammatory bowel disease: a Slovak case-control study. United European Gastroenterol J 1(2):109–119. https://doi.org/10.1177/2050640613478011

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shaw SY, Nugent Z, Targownik LE, Singh H, Blanchard JF, Bernstein CN (2014) Association between spring season of birth and Crohn’s disease. Clin Gastroenterol Hepatol 12(2):277–282. https://doi.org/10.1016/j.cgh.2013.07.028

    Article  PubMed  Google Scholar 

  78. Klement E, Cohen RV, Boxman J, Joseph A, Reif S (2004) Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr 80(5):1342–1352

    Article  CAS  Google Scholar 

  79. Xu L, Lochhead P, Ko Y, Claggett B, Leong RW, Ananthakrishnan AN (2017) Systematic review with meta-analysis: breastfeeding and the risk of Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 46(9):780–789. https://doi.org/10.1111/apt.14291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ng SC, Tang W, Leong RW, Chen M, Ko Y, Studd C, Niewiadomski O, Bell S, Kamm MA, de Silva HJ, Kasturiratne A, Senanayake YU, Ooi CJ, Ling KL, Ong D, Goh KL, Hilmi I, Ouyang Q, Wang YF, Hu P, Zhu Z, Zeng Z, Wu K, Wang X, Xia B, Li J, Pisespongsa P, Manatsathit S, Aniwan S, Simadibrata M, Abdullah M, Tsang SW, Wong TC, Hui AJ, Chow CM, Yu HH, Li MF, Ng KK, Ching J, Wu JC, Chan FK, Sung JJ (2015) Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64(7):1063–1071. https://doi.org/10.1136/gutjnl-2014-307410

    Article  PubMed  Google Scholar 

  81. Section on B (2012) Breastfeeding and the use of human milk. Pediatrics 129 (3):e827-e841. doi:https://doi.org/10.1542/peds.2011-3552

  82. Julsgaard M, Norgaard M, Hvas CL, Grosen A, Hasseriis S, Christensen LA (2014) Self-reported adherence to medical treatment, breastfeeding behaviour, and disease activity during the postpartum period in women with Crohn’s disease. Scand J Gastroenterol 49(8):958–966. https://doi.org/10.3109/00365521.2014.920913

    Article  PubMed  Google Scholar 

  83. Moffatt DC, Ilnyckyj A, Bernstein CN (2009) A population-based study of breastfeeding in inflammatory bowel disease: initiation, duration, and effect on disease in the postpartum period. Am J Gastroenterol 104(10):2517–2523. https://doi.org/10.1038/ajg.2009.362

    Article  PubMed  Google Scholar 

  84. Kane S, Lemieux N (2005) The role of breastfeeding in postpartum disease activity in women with inflammatory bowel disease. Am J Gastroenterol 100(1):102–105. https://doi.org/10.1111/j.1572-0241.2005.40785.x

    Article  PubMed  Google Scholar 

  85. Kronborg H, Vaeth M (2004) The influence of psychosocial factors on the duration of breastfeeding. Scand J Public Health 32(3):210–216. https://doi.org/10.1080/14034940310019218

    Article  PubMed  Google Scholar 

  86. Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, Narbad A, Olivares M, Xaus J, Rodriguez JM (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51(4):270–274. https://doi.org/10.1007/s00284-005-0020-3

    Article  CAS  PubMed  Google Scholar 

  87. Poroyko V, White JR, Wang M, Donovan S, Alverdy J, Liu DC, Morowitz MJ (2010) Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS One 5(8):e12459. https://doi.org/10.1371/journal.pone.0012459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69–75. https://doi.org/10.1097/mog.0000000000000139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE (2007) Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56(5):661–667. https://doi.org/10.1136/gut.2006.100164

    Article  CAS  PubMed  Google Scholar 

  90. van Nimwegen FA, Penders J, Stobberingh EE, Postma DS, Koppelman GH, Kerkhof M, Reijmerink NE, Dompeling E, van den Brandt PA, Ferreira I, Mommers M, Thijs C (2011) Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol 128(5):948–955.e941-943. https://doi.org/10.1016/j.jaci.2011.07.027

    Article  PubMed  Google Scholar 

  91. Donnet-Hughes A, Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ (2010) Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 69(3):407–415. https://doi.org/10.1017/s0029665110001898

    Article  PubMed  Google Scholar 

  92. Barclay AR, Russell RK, Wilson ML, Gilmour WH, Satsangi J, Wilson DC (2009) Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J Pediatr 155(3):421–426. https://doi.org/10.1016/j.jpeds.2009.03.017

    Article  PubMed  Google Scholar 

  93. Hisabe T, Matsui T, Sakurai T, Murakami Y, Tanabe H, Matake H, Yao T, Kamachi S, Iwashita A (2003) Anti-Saccharomyces cerevisiae antibodies in Japanese patients with inflammatory bowel disease: diagnostic accuracy and clinical value. J Gastroenterol 38(2):121–126. https://doi.org/10.1007/s005350300020

    Article  PubMed  Google Scholar 

  94. El-Matary W, Dupuis K, Sokoro A (2015) Anti-Saccharomyces cerevisiae antibody titres correlate well with disease activity in children with Crohn’s disease. Acta Paediatr (Oslo, Norway : 1992) 104(8):827–830. https://doi.org/10.1111/apa.13026

    Article  CAS  Google Scholar 

  95. Baron S, Turck D, Leplat C, Merle V, Gower-Rousseau C, Marti R, Yzet T, Lerebours E, Dupas JL, Debeugny S, Salomez JL, Cortot A, Colombel JF (2005) Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 54(3):357–363. https://doi.org/10.1136/gut.2004.054353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vcev A, Pezerovic D, Jovanovic Z, Nakic D, Vcev I, Majnaric L (2015) A retrospective, case-control study on traditional environmental risk factors in inflammatory bowel disease in Vukovar-Srijem County, north-eastern Croatia, 2010. Wien Klin Wochenschr 127(9-10):345–354. https://doi.org/10.1007/s00508-015-0741-7

    Article  PubMed  Google Scholar 

  97. Burisch J, Pedersen N, Cukovic-Cavka S, Turk N, Kaimakliotis I, Duricova D, Bortlik M, Shonova O, Vind I, Avnstrom S, Thorsgaard N, Krabbe S, Andersen V, Dahlerup JF, Kjeldsen J, Salupere R, Olsen J, Nielsen KR, Manninen P, Collin P, Katsanos KH, Tsianos EV, Ladefoged K, Lakatos L, Ragnarsson G, Bjornsson E, Bailey Y, O'Morain C, Schwartz D, Odes S, Giannotta M, Girardin G, Kiudelis G, Kupcinskas L, Turcan S, Barros L, Magro F, Lazar D, Goldis A, Nikulina I, Belousova E, Martinez-Ares D, Hernandez V, Almer S, Zhulina Y, Halfvarson J, Arebi N, Tsai HH, Sebastian S, Lakatos PL, Langholz E, Munkholm P (2014) Environmental factors in a population-based inception cohort of inflammatory bowel disease patients in Europe--an ECCO-EpiCom study. J Crohn's Colitis 8(7):607–616. https://doi.org/10.1016/j.crohns.2013.11.021

    Article  CAS  Google Scholar 

  98. Amre DK, Lambrette P, Law L, Krupoves A, Chotard V, Costea F, Grimard G, Israel D, Mack D, Seidman EG (2006) Investigating the hygiene hypothesis as a risk factor in pediatric onset Crohn’s disease: a case-control study. Am J Gastroenterol 101(5):1005–1011. https://doi.org/10.1111/j.1572-0241.2006.00526.x

    Article  PubMed  Google Scholar 

  99. El-Tawil AM (2009) A population-based case-control study of potential risk factors for IBD. Am J Gastroenterol 104(4):1064. https://doi.org/10.1038/ajg.2008.165

    Article  CAS  PubMed  Google Scholar 

  100. Jess T, Frisch M, Jorgensen KT, Pedersen BV, Nielsen NM (2012) Increased risk of inflammatory bowel disease in women with endometriosis: a nationwide Danish cohort study. Gut 61(9):1279–1283. https://doi.org/10.1136/gutjnl-2011-301095

    Article  PubMed  Google Scholar 

  101. Gawron LM, Goldberger A, Gawron AJ, Hammond C, Keefer L (2014) The impact of hormonal contraception on disease-related cyclical symptoms in women with inflammatory bowel diseases. Inflamm Bowel Dis 20(10):1729–1733. https://doi.org/10.1097/mib.0000000000000134

    Article  PubMed  Google Scholar 

  102. Khalili H, Higuchi LM, Ananthakrishnan AN, Richter JM, Feskanich D, Fuchs CS, Chan AT (2013) Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut 62(8):1153–1159. https://doi.org/10.1136/gutjnl-2012-302362

    Article  CAS  PubMed  Google Scholar 

  103. Cornish JA, Tan E, Simillis C, Clark SK, Teare J, Tekkis PP (2008) The risk of oral contraceptives in the etiology of inflammatory bowel disease: a meta-analysis. Am J Gastroenterol 103(9):2394–2400. https://doi.org/10.1111/j.1572-0241.2008.02064.x

    Article  PubMed  Google Scholar 

  104. Khalili H, Granath F, Smedby KE, Ekbom A, Neovius M, Chan AT, Olen O (2016) Association between long-term oral contraceptive use and risk of Crohn’s disease complications in a nationwide study. Gastroenterology 150(7):1561–1567.e1561. https://doi.org/10.1053/j.gastro.2016.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rettew JA, Huet-Hudson YM, Marriott I (2008) Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 78(3):432–437. https://doi.org/10.1095/biolreprod.107.063545

    Article  CAS  PubMed  Google Scholar 

  106. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2):577–594. https://doi.org/10.1053/j.gastro.2007.11.059

    Article  CAS  PubMed  Google Scholar 

  107. Jess T, Simonsen J, Nielsen NM, Jorgensen KT, Bager P, Ethelberg S, Frisch M (2011) Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut 60(3):318–324. https://doi.org/10.1136/gut.2010.223396

    Article  PubMed  Google Scholar 

  108. Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H (2009) Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137(2):495–501. https://doi.org/10.1053/j.gastro.2009.04.001

    Article  PubMed  Google Scholar 

  109. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693

    Article  CAS  Google Scholar 

  110. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R, Franke L, van Dullemen HM, Ter Steege RWF, Huttenhower C, Dijkstra G, Xavier RJ, Festen EAM, Wijmenga C, Zhernakova A, Weersma RK (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67(1):108–119. https://doi.org/10.1136/gutjnl-2016-312135

    Article  CAS  PubMed  Google Scholar 

  111. Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL (2012) Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease--a nationwide, register-based Finnish case-control study. Am J Epidemiol 175(8):775–784. https://doi.org/10.1093/aje/kwr400

    Article  PubMed  Google Scholar 

  112. Gearry RB, Richardson AK, Frampton CM, Dodgshun AJ, Barclay ML (2010) Population-based cases control study of inflammatory bowel disease risk factors. J Gastroenterol Hepatol 25(2):325–333. https://doi.org/10.1111/j.1440-1746.2009.06140.x

    Article  PubMed  Google Scholar 

  113. Ungaro R, Bernstein CN, Gearry R, Hviid A, Kolho KL, Kronman MP, Shaw S, Van Kruiningen H, Colombel JF, Atreja A (2014) Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol 109(11):1728–1738. https://doi.org/10.1038/ajg.2014.246

    Article  CAS  PubMed  Google Scholar 

  114. Shaw SY, Blanchard JF, Bernstein CN (2011) Association between the use of antibiotics and new diagnoses of Crohn’s disease and ulcerative colitis. Am J Gastroenterol 106(12):2133–2142. https://doi.org/10.1038/ajg.2011.304

    Article  PubMed  Google Scholar 

  115. Card T, Logan RF, Rodrigues LC, Wheeler JG (2004) Antibiotic use and the development of Crohn’s disease. Gut 53(2):246–250. https://doi.org/10.1136/gut.2003.025239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Margolis DJ, Fanelli M, Hoffstad O, Lewis JD (2010) Potential association between the oral tetracycline class of antimicrobials used to treat acne and inflammatory bowel disease. Am J Gastroenterol 105(12):2610–2616. https://doi.org/10.1038/ajg.2010.303

    Article  CAS  PubMed  Google Scholar 

  117. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE (2012) Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130(4):e794–e803. https://doi.org/10.1542/peds.2011-3886

    Article  PubMed  PubMed Central  Google Scholar 

  118. Doherty G, Bennett G, Patil S, Cheifetz A, Moss AC (2009) Interventions for prevention of post-operative recurrence of Crohn’s disease. Cochrane Database Syst Rev (4):Cd006873. https://doi.org/10.1002/14651858.CD006873.pub2

  119. Ng SC, Leung WK, Shi HY, Li MK, Leung CM, Ng CK, Lo FH, Hui YT, Tsang SW, Chan YK, Loo CK, Chan KH, Hui AJ, Chow WH, Harbord M, Ching JY, Lee M, Chan V, Tang W, Hung IF, Ho J, Lao WC, Wong MT, Sze SF, Shan EH, Lam BC, Tong RW, Mak LY, Wong SH, Wu JC, Chan FK, Sung JJ (2016) Epidemiology of Inflammatory Bowel Disease from 1981 to 2014: Results from a territory-wide population-based registry in Hong Kong. Inflamm Bowel Dis 22(8):1954–1960. https://doi.org/10.1097/mib.0000000000000846

    Article  PubMed  Google Scholar 

  120. Cosnes J, Nion-Larmurier I, Afchain P, Beaugerie L, Gendre JP (2004) Gender differences in the response of colitis to smoking. Clin Gastroenterol Hepatol 2(1):41–48

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81770545) and MDT Project of Clinical Research Innovation Foundation, Renji Hospital, School of Medicine, Shanghai Jiaotong University (PYI-17-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, Y. & Shen, J. Role of environmental factors in the pathogenesis of Crohn’s disease: a critical review. Int J Colorectal Dis 34, 2023–2034 (2019). https://doi.org/10.1007/s00384-019-03441-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-019-03441-9

Keywords

Navigation