Skip to main content
Log in

Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd2+) is a toxic and non-essential divalent metal ion in eukaryotic cells. Cells can only be targeted by Cd2+ if it hijacks physiological high-affinity entry pathways, which transport essential divalent metal ions in a process termed “ionic and molecular mimicry”. Hence, “free” Cd2+ ions and Cd2+ complexed with small organic molecules are transported across cellular membranes via ion channels, carriers and ATP hydrolyzing pumps, whereas receptor-mediated endocytosis (RME) internalizes Cd2+-protein complexes. Only Cd2+ transport pathways validated by stringent methodology, namely electrophysiology, 109Cd2+ tracer studies, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, or specific ligand binding and internalization assays for RME are reviewed whereas indirect correlative studies are excluded. At toxicologically relevant concentrations in the submicromolar range, Cd2+ permeates voltage-dependent Ca2+ channels (“T-type” CaV3.1, CatSper), transient receptor potential (TRP) channels (TRPA1, TRPV5/6, TRPML1), solute carriers (SLCs) (DMT1/SLC11A2, ZIP8/SLC39A8, ZIP14/SLC39A14), amino acid/cystine transporters (SLC7A9/SLC3A1, SLC7A9/SLC7A13), and Cd2+-protein complexes are endocytosed by the lipocalin-2/NGAL receptor SLC22A17. Cd2+ transport via the mitochondrial Ca2+ uniporter, ATPases ABCC1/2/5 and transferrin receptor 1 is likely but requires further evidence. Cd2+ flux occurs through the influx carrier OCT2/SLC22A2, efflux MATE proteins SLC47A1/A2, the efflux ATPase ABCB1, and RME of Cd2+-metallothionein by the receptor megalin (low density lipoprotein receptor-related protein 2, LRP2):cubilin albeit at high concentrations thus questioning their relevance in Cd2+ loading. Which Cd2+-protein complexes are internalized by megalin:cubilin in vivo still needs to be determined. A stringent conservative and reductionist approach is mandatory to verify relevance of transport pathways for Cd2+ toxicity and to overcome dissemination of unsubstantiated conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Acknowledgements

Research in the laboratory was supported by the DFG, BMBF (01DN16039), the University of Witten/Herdecke and ZBAF. The authors thank Dr. Natascha A. Wolff (University of Witten/Herdecke) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Thévenod.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thévenod, F., Fels, J., Lee, WK. et al. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals 32, 469–489 (2019). https://doi.org/10.1007/s10534-019-00176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00176-6

Keywords

Navigation