Skip to main content

Membrane Transport Proteins and Receptors for Cadmium and Cadmium Complexes

  • Chapter
  • First Online:
Cadmium Interaction with Animal Cells

Abstract

Cadmium (Cd2+) is a non-essential divalent metal ion without physiological function in animal cells. For toxicity to occur, Cd2+ must first enter cells by utilizing physiological transport pathways for essential divalent metal ions, such as Fe2+, Zn2+, Cu2+, Ca2+, or Mn2+. ‘Free’ Cd2+ ions and Cd2+ ions bound to small organic molecules are transported via ion channels, carrier proteins or ATP hydrolyzing pumps, whereas metalloproteins are internalized by receptor-mediated endocytosis (RME). This review describes Cd2+ transport (influx/efflux) pathways that were validated by electrophysiology (e.g. patch clamp), 109Cd2+ flux, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, specific ligand binding, and ligand internalization assays that are ideally studied in heterologous expression systems. Convincing evidence has been obtained for Cd2+ permeation for Ca2+ channels at toxicologically relevant concentrations (CaV3.1, CatSper) TRP channels (TRPA1, TRPV5/6, TRPML1), solute carriers (DMT1, ZIP8, ZIP14, system (b0, + AT)) and RME of Cd2+-protein complexes (Lipocalin-2 receptor). The carrier OCT2 mediates Cd2+ influx and MATE1/2 and the ATPase ABCB1 Cd2+ efflux at high, toxicologically irrelevant Cd2+ concentrations. L- and N-type voltage-, ligand-gated, store-operated Ca2+ channels, CFTR, connexins and the transporter ferroportin-1 are not permeated by Cd2+. More experimental evidence is needed for the mitochondrial Ca2+ uniporter, the ATPase ABCC1 and the transferrin receptor 1. Although the receptor megalin: cubilin mediates RME of Cd2+-metallothionein complex at high, but toxicologically irrelevant concentrations, its in vivo Cd2+-protein–ligand complexes still need to be identified. A stringent methodology is mandatory to prove additional Cd2+ transport pathways instead of propagating unsubstantiated speculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thévenod F, Lee WK (2013) Toxicology of cadmium and its damage to Mammalian organs. Met Ions Life Sci 11:415–490

    Article  PubMed  CAS  Google Scholar 

  2. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  3. Elinder CG, Friberg L, Lind B, Jawaid M (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253

    Article  CAS  PubMed  Google Scholar 

  4. Cornelis R, Heinzow B, Herber RF, Christensen JM, Poulsen OM, Sabbioni E, Templeton DM, Thomassen Y, Vahter M, Vesterberg O (1996) Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology. J Trace Elem Med Biol 10:103–127

    Article  CAS  PubMed  Google Scholar 

  5. Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci 11:1–29

    Article  CAS  PubMed  Google Scholar 

  6. Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571

    Article  CAS  PubMed  Google Scholar 

  7. Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875

    Article  PubMed  CAS  Google Scholar 

  8. Jorge-Nebert LF, Galvez-Peralta M, Landero Figueroa J, Somarathna M, Hojyo S, Fukada T, Nebert DW (2015) Comparing gene expression during cadmium uptake and distribution: untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci 143:26–35

    Article  CAS  PubMed  Google Scholar 

  9. Ohrvik H, Tyden E, Artursson P, Oskarsson A, Tallkvist J (2013) Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and Not DMT1 or FPN1. ISRN Toxicology 2013:892364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nemmiche S, Guiraud P (2016) Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicol In Vitro 37:169–177

    Article  CAS  Google Scholar 

  11. Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280:118–125

    Article  CAS  PubMed  Google Scholar 

  12. Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786

    Article  PubMed  CAS  Google Scholar 

  13. Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  14. Kimura O, Endo T, Hotta Y, Sakata M (2005) Effects of P-glycoprotein inhibitors on transepithelial transport of cadmium in cultured renal epithelial cells, LLC-PK1 and LLC-GA5-COL 150. Toxicology 208:123–132

    Article  CAS  PubMed  Google Scholar 

  15. Lee WK, Torchalski B, Kohistani N, Thévenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121:343–356

    Article  CAS  PubMed  Google Scholar 

  16. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  CAS  PubMed  Google Scholar 

  17. Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  19. Yunker AM, McEnery MW (2003) Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 35:533–575

    Article  CAS  PubMed  Google Scholar 

  20. Lopin KV, Thévenod F, Page JC, Jones SW (2012) Cd(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for Cd(2)(+) influx. Mol Pharmacol 82:1183–1193

    Article  CAS  PubMed  Google Scholar 

  21. Garza-Lopez E, Chavez JC, Santana-Calvo C, Lopez-Gonzalez I, Nishigaki T (2016) Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 60:41–50

    Article  CAS  PubMed  Google Scholar 

  22. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61

    Article  CAS  PubMed  Google Scholar 

  23. Lacinova L, Klugbauer N, Hofmann F (2000) Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmacology 39:1254–1266

    Article  CAS  PubMed  Google Scholar 

  24. Shuba YM (2014) Models of calcium permeation through T-type channels. Pflugers Arch 466:635–644

    Article  CAS  PubMed  Google Scholar 

  25. Cai X, Clapham DE (2008) Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS ONE 3:e3569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouron A, Kiselyov K, Oberwinkler J (2015) Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467:1143–1164

    Article  CAS  PubMed  Google Scholar 

  28. Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458

    Article  CAS  PubMed  Google Scholar 

  29. Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T (2013) Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Molecular pain 9:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Goor MKC, Hoenderop JGJ, van der Wijst J (2017) TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta 1864:883–893

    Article  CAS  Google Scholar 

  31. Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49:43–55

    Article  CAS  PubMed  Google Scholar 

  32. Kovacs G, Montalbetti N, Franz MC, Graeter S, Simonin A, Hediger MA (2013) Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium 54:276–286

    Article  CAS  PubMed  Google Scholar 

  33. Chubanov V, Mittermeier L, Gudermann T (2018) Role of kinase-coupled TRP channels in mineral homeostasis. Pharmacol Ther 184:159–176

    Article  CAS  Google Scholar 

  34. Levesque M, Martineau C, Jumarie C, Moreau R (2008) Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells. Toxicol Appl Pharmacol 231:308–317

    Article  CAS  PubMed  Google Scholar 

  35. Martineau C, Abed E, Medina G, Jomphe LA, Mantha M, Jumarie C, Moreau R (2010) Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol Lett 199:357–363

    Article  CAS  PubMed  Google Scholar 

  36. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang W, Zhang X, Gao Q, Xu H (2014) TRPML1: an ion channel in the lysosome. Handb Exp Pharmacol 222:631–645

    Article  CAS  PubMed  Google Scholar 

  39. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56

    Article  CAS  PubMed  Google Scholar 

  41. Zeevi DA, Lev S, Frumkin A, Minke B, Bach G (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123:3112–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolff NA, Abouhamed M, Verroust PJ, Thévenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791

    Article  CAS  PubMed  Google Scholar 

  43. Lee WK, Probst S, Santoyo-Sanchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thévenod F (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91:3225–3245

    Article  CAS  PubMed  Google Scholar 

  44. Yeung PS, Yamashita M, Prakriya M (2017) Pore opening mechanism of CRAC channels. Cell Calcium 63:14–19

    Article  CAS  PubMed  Google Scholar 

  45. Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161

    Article  CAS  PubMed  Google Scholar 

  46. Hinkle PM, Shanshala ED 2nd, Nelson EJ (1992) Measurement of intracellular cadmium with fluorescent dyes. Further evidence for the role of calcium channels in cadmium uptake. J Biol Chem 267:25553–25559

    CAS  PubMed  Google Scholar 

  47. Smith JB, Dwyer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264:7115–7118

    CAS  PubMed  Google Scholar 

  48. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    Article  CAS  PubMed  Google Scholar 

  49. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  50. Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16:545–553

    Article  CAS  PubMed  Google Scholar 

  51. Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca(2+) uniporter. Am J Physiol Renal Physiol 288:F27–39

    Article  CAS  Google Scholar 

  52. Adiele RC, Stevens D, Kamunde C (2012) Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 26:164–173

    Article  CAS  Google Scholar 

  53. Onukwufor JO, Kibenge F, Stevens D, Kamunde C (2015) Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 158:75–87

    Article  CAS  PubMed  Google Scholar 

  54. Lee WK, Spielmann M, Bork U, Thévenod F (2005) Cd2+ -induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 289:C656–C664

    Article  CAS  PubMed  Google Scholar 

  55. Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726

    Article  CAS  PubMed  Google Scholar 

  56. Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22:1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. L’Hoste S, Chargui A, Belfodil R, Duranton C, Rubera I, Mograbi B, Poujeol C, Tauc M, Poujeol P (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031

    Article  PubMed  CAS  Google Scholar 

  58. Fiori MC, Reuss L, Cuello LG, Altenberg GA (2014) Functional analysis and regulation of purified connexin hemichannels. Front Physiol 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  59. Beyer EC, Berthoud VM (2017) Gap junction structure: unraveled, but not fully revealed. F1000Research 6:568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE 2:e712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J (2011) Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 14:2427–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vinken M, Ceelen L, Vanhaecke T, Rogiers V (2010) Inhibition of gap junctional intercellular communication by toxic metals. Chem Res Toxicol 23:1862–1867

    Article  CAS  PubMed  Google Scholar 

  63. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  64. Coffey R, Ganz T (2017) Iron homeostasis: an anthropocentric perspective. J Biol Chem 292:12727–12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Top Membr 70:169–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28:2134–2145

    Article  CAS  PubMed  Google Scholar 

  67. Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H (2003) Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol Appl Pharmacol 187:162–167

    Article  CAS  PubMed  Google Scholar 

  68. Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152

    Article  CAS  PubMed  Google Scholar 

  70. Kippler M, Goessler W, Nermell B, Ekstrom EC, Lonnerdal B, El Arifeen S, Vahter M (2009) Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women–a prospective cohort study. Environ Res 109:914–921

    Article  CAS  PubMed  Google Scholar 

  71. Smith CP, Thévenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730

    Article  CAS  PubMed  Google Scholar 

  72. Abouhamed M, Wolff NA, Lee WK, Smith CP, Thévenod F (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–712

    Article  CAS  Google Scholar 

  73. Barbier O, Jacquillet G, Tauc M, Poujeol P, Cougnon M (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–1075

    Article  CAS  Google Scholar 

  74. Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287:34032–34043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    Article  CAS  PubMed  Google Scholar 

  77. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180

    CAS  PubMed  Google Scholar 

  78. Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP, He L, Miller ML, Stringer KF, Soleimani M, Richardson DD, Nebert DW (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292:C1523–1535

    Article  CAS  Google Scholar 

  79. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435

    Article  CAS  PubMed  Google Scholar 

  80. Bruggeman IM, Temmink JH, van Bladeren PJ (1992) Effect of glutathione and cysteine on apical and basolateral uptake and toxicity of CdCl(2) in kidney cells (LLC-PK(1)). Toxicol In Vitro 6:195–200

    Article  CAS  PubMed  Google Scholar 

  81. Thévenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H (2013) Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+. Mol Pharm 10:3045–3056

    Article  PubMed  CAS  Google Scholar 

  82. Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V (2011) Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 204:38–42

    Article  CAS  PubMed  Google Scholar 

  83. Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 90:1555–1584

    Article  CAS  PubMed  Google Scholar 

  84. Yang H, Guo D, Obianom ON, Su T, Polli JE, Shu Y (2017) Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol Appl Pharmacol 314:55–62

    Article  CAS  PubMed  Google Scholar 

  85. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Zalups RK, Barfuss DW (2010) Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 193:61–68

    Article  CAS  PubMed  Google Scholar 

  87. Fotiadis D, Kanai Y, Palacin M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158

    Article  CAS  PubMed  Google Scholar 

  88. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out Ferroportin. Cell Metab 22:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  CAS  PubMed  Google Scholar 

  90. Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP (2011) Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 15:209–219

    Article  CAS  PubMed  Google Scholar 

  91. Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B (2014) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol 306:C450–459

    Article  CAS  Google Scholar 

  92. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  CAS  PubMed  Google Scholar 

  93. Carriere P, Mantha M, Champagne-Paradis S, Jumarie C (2011) Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24:857–874

    Article  CAS  PubMed  Google Scholar 

  94. Zimmerhackl LB, Momm F, Wiegele G, Brandis M (1998) Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex. Am J Physiol 275:F143–153

    CAS  PubMed  Google Scholar 

  95. Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, Bourdineaud JP (2005) Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 44:5916–5922

    Article  CAS  PubMed  Google Scholar 

  96. Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117

    Article  CAS  PubMed  Google Scholar 

  97. Tommasini R, Evers R, Vogt E, Mornet C, Zaman GJ, Schinkel AH, Borst P, Martinoia E (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci U S A 93:6743–6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Della Torre C, Bocci E, Focardi SE, Corsi I (2014) Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response. Marine environmental research 93:56–63

    Article  CAS  PubMed  Google Scholar 

  99. Tian J, Hu J, Chen M, Yin H, Miao P, Bai P, Yin J (2017) The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene. Aquat Toxicol 186:123–133

    Article  CAS  PubMed  Google Scholar 

  100. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    CAS  PubMed  Google Scholar 

  101. Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130:11524–11534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D’Agati V, Lin CS, Barasch J (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A, Viltard M, Williams D, Paragas N, Leete T, Kulkarni R, Li X, Lee B, Kalandadze A, Ratner AJ, Pizarro JC, Schmidt-Ott KM, Landry DW, Raymond KN, Strong RK, Barasch J (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 6:602–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305

    Article  CAS  PubMed  Google Scholar 

  106. Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–834

    Article  CAS  PubMed  Google Scholar 

  107. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777

    Article  CAS  PubMed  Google Scholar 

  108. Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee WK, Thévenod F (2012) Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 287:159–169

    Article  CAS  PubMed  Google Scholar 

  109. Langelueddecke C, Roussa E, Fenton RA, Thévenod F (2013) Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 8:e71586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Langelueddecke C, Lee WK, Thévenod F (2014) Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity. Toxicol Lett 226:228–235

    Article  CAS  PubMed  Google Scholar 

  111. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    Article  CAS  PubMed  Google Scholar 

  112. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236

    CAS  Google Scholar 

  113. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926

    Article  CAS  PubMed  Google Scholar 

  114. Freisinger E, Vasak M (2013) Cadmium in metallothioneins. Met Ions Life Sci 11:339–371

    Article  CAS  PubMed  Google Scholar 

  115. Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288

    Article  CAS  PubMed  Google Scholar 

  116. Goumakos W, Laussac JP, Sarkar B (1991) Binding of cadmium(II) and zinc(II) to human and dog serum albumins. An equilibrium dialysis and 113Cd-NMR study. Biochem Cell Biol 69:809–820

    Article  CAS  PubMed  Google Scholar 

  117. Erfurt C, Roussa E, Thévenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–1376

    Article  CAS  PubMed  Google Scholar 

  118. Thévenod F, Wolff NA (2016) Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8:17–42

    Article  CAS  Google Scholar 

  119. Milnerowicz H, Bizon A (2010) Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol 57:99–104

    CAS  PubMed  Google Scholar 

  120. Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–403

    Article  Google Scholar 

  121. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203

    CAS  PubMed  Google Scholar 

  122. Liu J, Habeebu SS, Liu Y, Klaassen CD (1998) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58

    Article  CAS  PubMed  Google Scholar 

  123. Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656

    Article  CAS  PubMed  Google Scholar 

  124. Santoyo-Sanchez MP, Pedraza-Chaverri J, Molina-Jijon E, Arreola-Mendoza L, Rodriguez-Munoz R, Barbier OC (2013) Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrology 14:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Prozialeck WC, VanDreel A, Ackerman CD, Stock I, Papaeliou A, Yasmine C, Wilson K, Lamar PC, Sears VL, Gasiorowski JZ, DiNovo KM, Vaidya VS, Edwards JR (2016) Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals 29:131–146

    Article  CAS  PubMed  Google Scholar 

  126. Chasteen DN (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36

    Article  CAS  Google Scholar 

  127. Frazer DM, Anderson GJ (2014) The regulation of iron transport. BioFactors 40:206–214

    Article  CAS  PubMed  Google Scholar 

  128. Vincent JB, Love S (2012) The binding and transport of alternative metals by transferrin. Biochim Biophys Acta 1820:362–378

    Article  CAS  PubMed  Google Scholar 

  129. De Smet H, Blust R, Moens L (2001) Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 128:45–53

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research is supported by a grant from BMBF (01DN16039), the University of Witten/Herdecke and ZBAF. The author thanks Dr. Wing-Kee Lee (University of Witten/Herdecke) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Thévenod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thévenod, F. (2018). Membrane Transport Proteins and Receptors for Cadmium and Cadmium Complexes. In: Thévenod, F., Petering, D., M. Templeton, D., Lee, WK., Hartwig, A. (eds) Cadmium Interaction with Animal Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-89623-6_1

Download citation

Publish with us

Policies and ethics