Skip to main content
Log in

Variation on a theme: investigating the structural repertoires used by ferric uptake regulators to control gene expression

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In every living organism, the control of metal homoeostasis is a tightly regulated process coordinated by several intertwined biological pathways. In many bacteria, the ferric uptake regulator (Fur) family of transcriptional factors (TFs) are key factors in controlling the expression of genes involved in metal homeostasis and can also regulate the expression of genes involved in responses to oxidative stresses. Since the crystallization of Escherichia coli Fur DNA binding domain, the crystal structure of several metalloregulators have been reported. While the Fur family of proteins adopt similar structures, each contains unique structural features relating to their specific biological functions. Moreover, recent groundbreaking studies have provided additional insights into the mechanisms underlying the binding of DNA by these metalloregulators. In this review, we present a comprehensive overview of the crystal structure of Fur family metalloregulators with a specific focus on the new structures of these TFs bound to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal S, King CA, Klein EK, Soper DE, Rice PA, Wetzler LM, Genco CA (2005) The gonococcal Fur-regulated tbpA and tbpB genes are expressed during natural mucosal gonococcal infection. Infect Immun 73:4281–4287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agriesti F, Roncarati D, Musiani F, Del Campo C, Iurlaro M, Sparla F, Ciurli S, Danielli A, Scarlato V (2014) FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Nucleic Acids Res 42:3138–3151

    Article  PubMed  CAS  Google Scholar 

  • Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858

    Article  PubMed  CAS  Google Scholar 

  • Alamuri P, Mehta N, Burk A, Maier RJ (2006) Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and Fur. J Bacteriol 188:5325–5330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allard KA, Viswanathan VK, Cianciotto NP, Al AET (2006) lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An YJ, Ahn BE, Han AR, Kim HM, Chung KM, Shin JH, Cho YB, Roe JH, Cha SS (2009) Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 37:3442–3451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews SC, Robinson AK, RodrÃ-guez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Askoura M, Sarvan S, Couture JF, Stintzi A (2016) The Campylobacter jejuni ferric uptake regulator promotes acid survival and cross-protection against oxidative stress. Infect Immun 84:1287–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagg A, Neilands JB (1985) Mapping of a mutation affecting regulation of iron uptake systems in Escherichia coli K-12. J Bacteriol 161:450–453

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477

    Article  PubMed  CAS  Google Scholar 

  • Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the fur box consensus sequence. Society 184:5826–5832

    CAS  Google Scholar 

  • Bellini P, Hemmings AM (2006) In vitro characterization of a bacterial manganese uptake regulator of the Fur superfamily. Biochemistry 45:2686–2698

    Article  PubMed  CAS  Google Scholar 

  • Bender KS, Yen HCB, Hemme CL, Yang Z, He Z, He Q, Zhou J, Huang KH, Alm EJ, Hazen TC, Arkin AP, Wall JD (2007) Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 73:5389–5400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bereswill S, Lichte F, Vey T, Fassbinder F, Kist M (1998) Cloning and characterization of the fur gene from Helicobacter pylori. FEMS Microbiol Lett 159:193–200

    Article  PubMed  CAS  Google Scholar 

  • Berish SA, Subbarao S, Chen CY, Trees DL, Morse SA (1993) Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect Immun 61:4599–4606

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bes MT, Hernández JA, Peleato ML, Fillat MF (2001) Cloning, overexpression and interaction of recombinant Fur from the Cyanobacterium Anabaena PCC 7119 with isiB and its own promoter. FEMS Microbiol Lett 194:187–192

    Article  PubMed  CAS  Google Scholar 

  • Bijlsma JJE, Waidner B, Van Vliet AHM, Hughes NJ, Häg S, Bereswill S, Kelly DJ, Vandenbroucke-Grauls CMJE, Kist M, Kusters JG (2002) The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect Immun 70:606–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bindereif A, Neilands JB (1985) Promoter mapping and transcriptional regulation of the iron assimilation system of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol 162:1039–1046

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152

    Article  PubMed  CAS  Google Scholar 

  • Brickman TJ, Armstrong SK (1995) Bordetella pertussis fur gene restores iron repressibility of siderophore and protein expression to deregulated Bordetella Bronchiseptica mutants. J Bacteriol 177:268–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  PubMed  CAS  Google Scholar 

  • Bury-Moné S, Thiberge J-M, Contreras M, Maitournam A, Labigne A, De Reuse H (2004) Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol 53:623–638

    Article  PubMed  CAS  Google Scholar 

  • Butcher J, Sarvan S, Brunzelle JS, Couture JF, Stintzi A (2012) Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci U S A 109:10047–10052

    Article  PubMed  PubMed Central  Google Scholar 

  • Butcher J, Handley RA, van Vliet AH, Stintzi A (2015) Refined analysis of the Campylobacter jejuni iron-dependent/independent Fur- and PerR-transcriptomes. BMC Genom 16:498

    Article  CAS  Google Scholar 

  • Carpenter BM, Gancz H, Gonzalez-Nieves RP, West AL, Whitmire JM, Michel SLJ, Merrell DS (2009a) A single nucleotide change affects fur-dependent regulation of sodB in H. pylori. PLoS ONE 4:e5369–e5369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter BM, Whitmire JM, Merrell DS (2009b) This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77:2590–2601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter BM, Gilbreath JJ, Pich OQ, McKelvey AM, Maynard EL, Li ZZ, Scott Merrell D (2013) Identification and characterization of novel helicobacter pylori apo-Fur-Regulated target genes. J Bacteriol 195:5526–5539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carson SD, Thomas CE, Elkins C (1996) Cloning and sequencing of a Haemophilus ducreyi fur homolog. Gene 176:125–129

    Article  PubMed  CAS  Google Scholar 

  • Cha JY, Lee JS, Oh JI, Choi JW, Baik HS (2008) Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: fur controls expression of genes involved in quorum-sensing. Biochem Biophys Res Commun 366:281–287

    Article  PubMed  CAS  Google Scholar 

  • Craig SA, Carpenter CD, Mey AR, Wyckoff EE, Payne SM (2011) Positive regulation of the Vibrio cholerae porin OmpT by Iron and Fur. J Bacteriol 193:6505–6511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel C, Haentjens S, Bissinger MC, Courcol RJ (1999) Characterization of the Acinetobacter baumannii Fur regulator: cloning and sequencing of the fur homolog gene. FEMS Microbiol Lett 170:199–209

    Article  PubMed  CAS  Google Scholar 

  • Danielli A, Scarlato V (2010) Regulatory circuits in Helicobacter pylori: network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev 34:738–752

    Article  PubMed  CAS  Google Scholar 

  • Danielli A, Roncarati D, Delany I, Chiarini V, Rappuoli R, Scarlato V (2006) In vivo dissection of the Helicobacter pylori fur regulatory circuit by genome-wide location analysis. J Bacteriol 188:4654–4662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delany I, Grifantini R, Bartolini E, Rappuoli R, Scarlato V (2006) Effect of Neisseria meningitidis fur mutations on global control of gene transcription effect of Neisseria meningitidis Fur Mutations on global control of gene transcription. J Bacteriol 188:2483–2492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Sun F, Ji Q, Liang H, Missiakas D, Lan L, He C (2012) Expression of multidrug resistance efflux pump gene norA Is iron responsive in Staphylococcus aureus. J Bacteriol 194:1753–1762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Z, Wang Q, Liu Z, Zhang M, Machado ACD, Chiu T-P, Feng C, Zhang Q, Yu L, Qi L, Zheng J, Wang X, Huo X, Qi X, Li X, Wu W, Rohs R, Li Y, Chen Z (2015) Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator. Nat Commun 6:7642–7642

    Article  PubMed  PubMed Central  Google Scholar 

  • Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79:1260–1275

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AWB (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn2+—responsive transcriptional regulator. Microbiology 150:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Dowd GC, Casey PG, Begley M, Hill C, Gahan CGM (2012) Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiol Lett 327:118–125

    Article  PubMed  CAS  Google Scholar 

  • Duarte V, Latour J-M (2010) PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. Mol BioSyst 6:316–323

    Article  PubMed  CAS  Google Scholar 

  • Dubbs JM, Mongkolsuk S (2012) Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 194:5495–5503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ducey TF, Jackson L, Orvis J, Dyer DW (2009) Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. Microb Pathog 46:166–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst JF, Bennett RL, Rothfield LI (1978) Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst FD, Bereswill S, Waidner B, Stoof J, Mäder U, Kusters JG, Kuipers EJ, Kist M, van Vliet AHM, Homuth G (2005a) Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151:533–546

    Article  PubMed  CAS  Google Scholar 

  • Ernst FD, Homuth G, Stoof J, Mäder U, Waidner B, Kuipers EJ, Kist M, Kusters JG, Bereswill S, van Vliet AHM (2005b) Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J Bacteriol 187:3687–3692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fillat MF (2014) The fur (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52

    Article  PubMed  CAS  Google Scholar 

  • Fiorini F, Stefanini S, Valenti P, Chiancone E, De Biase D (2008) Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator. Gene 410:113–121

    Article  PubMed  CAS  Google Scholar 

  • Foster JW (1991) Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol 173:6896–6902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster JW, Hall HK (1992) Effect of Salmonella-Typhimurium Ferric Uptake Regulator (Fur) Mutations on Iron-Regulated and Ph-Regulated Protein-Synthesis. J Bacteriol 174:4317–4323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuangthong M, Helmann JD (2003) Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348–6357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuangthong M, Herbig AF, Bsat N, Helmann JD (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song K-B, Smaldone GT, Helmann JD (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci USA 105:11927–11932

    Article  PubMed  Google Scholar 

  • Gancz H, Censini S, Merrell DS (2006) Iron and pH homeostasis intersect at the level of fur regulation in the gastric pathogen Helicobacter pylori. Infect Immun 74:602–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao H, Zhou D, Li Y, Guo Z, Han Y, Song Y, Zhai J, Du Z, Wang X, Lu J, Yang R (2008) The iron-responsive fur regulon in Yersinia pestis. J Bacteriol 190:3063–3075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghassemian M, Straus NA (1996) Fur regulates the expression of iron-stress genes in the Cyanobacterium Synechococcus sp. strain PCC 7942. Microbiology (Reading, England) 142 (Pt 6):1469–1476

  • Gilston BA, Wang S, Marcus MD, Canalizo-Hernández MA, Swindell EP, Xue Y, Mondragón A, O’Halloran TV (2014) Structural and mechanistic basis of zinc regulation across the E. coli Zur Regulon. PLoS Biol 12: e1001987-e1001987

  • González A, Bes MT, Valladares A, Peleato ML, Fillat MF (2012) FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120. Environ Microbiol 14:3175–3187

    Article  PubMed  CAS  Google Scholar 

  • Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA (2003) Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci USA 100:9542–9547

    Article  PubMed  CAS  Google Scholar 

  • Gryllos I, Grifantini R, Colaprico A, Cary ME, Hakansson A, Carey DW, Suarez-Chavez M, Kalish LA, Mitchell PD, White GL, Wessels MR (2008) PerR confers phagocytic killing resistance and allows pharyngeal colonization by group A Streptococcus. PLoS Pathog 4:e1000145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall HK, Foster JW (1996) The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683–5691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamza I, Chauhan S, Hassett R, O’Brian MR (1998) The bacterial irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–21674

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1982) Negative control of iron uptake systems in Escherichia coli. FEMS Microbiol Lett 15:83–86

    Article  CAS  Google Scholar 

  • Hantke K (1984) Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol General Genet 197:337–341

    Article  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hassett DJ, Sokol PA, Howell ML, Ma JUF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M (2005) The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 187:6659–6667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidrich C, Hantke K, Bierbaum G, Sahl HG (1996) Identification and analysis of a gene encoding a Fur-like protein of Staphylococcus epidermidis. FEMS Microbiol Lett 140:253–259

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Wu MFW, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helmann JD (2014) Specificity of metal sensing: iron and manganese homeostasis in bacillus subtilis. J Biol Chem 289:28112–28120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859

    Article  PubMed  CAS  Google Scholar 

  • Hickey EK, Cianciotto NP (1994) Cloning and sequencing of the Legionella pneumophila fur gene. Gene 143:117–121

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh MJ, Ingham E, Foster SJ (2001) In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang DL, Tang DJ, Liao Q, Li HC, Chen Q, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL (2008) The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 36:4295–4309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isabella V, Wright LF, Barth K, Spence JM, Grogan S, Genco CA, Clark VL (2008) cis- and trans-acting elements involved in regulation of norB (norZ), the gene encoding nitric oxide reductase in Neisseria gonorrhoeae. Microbiology 154:226–239

    Article  PubMed  CAS  Google Scholar 

  • Jacquamet L, Traoré DAK, Ferrer JL, Proux O, Testemale D, Hazemann JL, Nazarenko E, El Ghazouani A, Caux-Thang C, Duarte C, Latour JM, (2009) Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73: 20–31

  • Jung Y-S, Kwon Y-M (2008) Small RNA ArrF Regulates the Expression of sodB and feSII Genes in Azotobacter vinelandii. Curr Microbiol 57:593–597

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA research: an international journal for rapid publication of reports on genes and genomes 3:185–209

    Article  CAS  Google Scholar 

  • Kebouchi M, Saul F, Taher R, Landier A, Beaudeau B, Dubrac S, Weber P, Haouz A, Picardeau M, Benaroudj N (2018) Structure and function of the Leptospira interrogans peroxide stress regulator (PerR), an atypical PerR devoid of a structural metal-binding site. J Biol Chem 293:497–509

    Article  PubMed  CAS  Google Scholar 

  • Kim IH, Wen Y, Son J-S, Lee K-H, Kim K-S (2013) The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator. SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus. 81:2888–2898

    CAS  Google Scholar 

  • Lavrrar JL, Christoffersen CA, McIntosh MA (2002) Fur–DNA Interactions at the Bidirectional fepDGC-entS Promoter Region in Escherichia coli. J Mol Biol 322:983–995

    Article  PubMed  CAS  Google Scholar 

  • Lee J-W, Helmann JD (2006a) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Helmann JD (2006b) Biochemical characterization of the structural Zn2 + site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 281:23567–23578

    Article  PubMed  CAS  Google Scholar 

  • Lee J-W, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 20:485–499

    Article  CAS  Google Scholar 

  • Lee H-J, Bang SH, Lee K-H, Park S-J (2007) Positive Regulation of fur Gene Expression via Direct Interaction of Fur in a Pathogenic Bacterium, Vibrio vulnificus. J Bacteriol 189:2629–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, C.S.H., S.Y. Chao, M. Hammel, J.C. Nix, H.L. Tseng, C.C. Tsou, C.H. Fei, H.S. Chiou, U.S. Jeng, Y.S. Lin, W.J. Chuang, J.J. Wu and S. Wang, (2014) Distinct structural features of the peroxide response regulator from group A streptococcus drive DNA binding. PLoS ONE 9

  • Litwin CM, Boyko SA, Calderwood SB (1992) Cloning, sequencing, and transcriptional regulation of the Vibrio cholerae fur gene. J Bacteriol 174:1897–1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Gomollón S, Sevilla E, Bes MT, Peleato ML, Fillat MF (2009) New insights into the role of Fur proteins: furB (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress. Biochem J 418:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E (2007) Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 282:9914–9922

    Article  PubMed  CAS  Google Scholar 

  • Makthal N, Rastegari S, Sanson M, Ma Z, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M (2013) Crystal structure of peroxide stress regulator from streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 288:18311–18324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    Article  PubMed  CAS  Google Scholar 

  • Mathieu S, Cisse C, Vitale S, Ahmadova A, Degardin M, Perard J, Colas P, Miras R, Boturyn D, Coves J, Crouzy S, Michaud-Soret I (2016) From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chem Biol 11:2519–2528

    Article  PubMed  CAS  Google Scholar 

  • Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA (2007) A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J Bacteriol 189:3686–3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metruccio MME, Fantappiè L, Serruto D, Muzzi A, Roncarati D, Donati C, Scarlato V, Delany I (2009) The Hfq-dependent small noncoding RNA NrrF directly mediates fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J Bacteriol 191:1330–1342

    Article  PubMed  CAS  Google Scholar 

  • Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM (2005) Iron and Fur Regulation in Vibrio cholerae and the Role of Fur in Virulence. 73:8167–8178

    CAS  Google Scholar 

  • Miles, S., B.M. Carpenter, H. Gancz and D.S. Merrell, (2010) Helicobacter pylori apo-Fur regulation appears unconserved across species. Journal of microbiology (Seoul, Korea) 48: 378–386

  • Mills SA, Marletta MA (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44:13553–13559

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    Article  PubMed  CAS  Google Scholar 

  • Nandal A, Huggins CCO, Woodhall MR, McHugh J, Rodríguez-Quiñones F, Quail MA, Guest JR, Andrews SC (2010) Induction of the ferritin gene (ftnA) of Escherichia coli by Fe 2 + -Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 75:637–657

    Article  PubMed  CAS  Google Scholar 

  • Ochsner URSA, Vasil AI, Vasil ML (1995) Role of the ferric uptake regulator of pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 177:7194–7201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004b) Iron Acquisition and regulation in Campylobacter jejuni. Society 186:4714–4729

    CAS  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004a) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332

    Article  PubMed  CAS  Google Scholar 

  • Pecqueur L, D’Autréaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B (2006) Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281:21286–21295

    Article  PubMed  CAS  Google Scholar 

  • Platero R, De Lorenzo V, Garat B, Fabiano E (2007) Sinorhizobium meliloti fur-like (Mur) protein binds a fur box-like sequence present in the mntA promoter in a manganese-responsive manner. Appl Environ Microbiol 73:4832–4838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    Article  PubMed  CAS  Google Scholar 

  • Prince RW, Cox CD, Vasil ML (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175:2589–2598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pym AS, Domenech P, Honoré N, Song J, Deretic V, Cole ST (2001) Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol Microbiol 40:879–889

    Article  PubMed  CAS  Google Scholar 

  • Qi Z, Hamza I, O’Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96:13056–13061

    Article  PubMed  CAS  Google Scholar 

  • Rea RB, Gahan CGM, Hill C (2004) Disruption of putative regulatory loci in listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Society 72:717–727

    CAS  Google Scholar 

  • Rimsky S (2004) Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114

    Article  PubMed  CAS  Google Scholar 

  • Rudolph G, Hennecke H, Fischer H-M (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648

    Article  PubMed  CAS  Google Scholar 

  • Sarvan S, Charih F, Butcher J, Brunzelle JS, Stintzi A, Couture JF (2018a) Crystal structure of Campylobacter jejuni Peroxide Regulator. FEBS Lett. https://doi.org/10.1002/1873-3468.13120

    Article  PubMed  Google Scholar 

  • Sarvan S, Charih F, Askoura M, Butcher J, Brunzelle JS, Stintzi A, Couture JF (2018b) Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators. Sci Rep 8:7140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schäffer S, Hantke K, Braun V (1985) Nucleotide sequence of the iron regulatory gene fur. Mol General Genet MGG 200:110–113

    Article  Google Scholar 

  • Seo SW, Kim D, Latif H, O’Brien EJ, Szubin R, Palsson BOØ (2015) Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 5:4910–4910

    Article  CAS  Google Scholar 

  • Sevilla E, Martin-luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–2483

    Article  PubMed  CAS  Google Scholar 

  • Sheikh MA, Taylor GL (2009) Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72:1208–1220

    Article  PubMed  CAS  Google Scholar 

  • Shin J-H, Jung HJ, An YJ, Cho Y-B, Cha S-S, Roe J-H (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci USA 108:5045–5050

    Article  PubMed  Google Scholar 

  • Smith KF, Bibb LA, Schmitt MP, Oram DM (2009) Regulation and activity of a zinc uptake regulator, zur, in Corynebacterium diphtheriae. J Bacteriol 191:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Staggs TM, Perry RD (1991) Identification and cloning of a fur regulatory gene in Yersinia pestis. J Bacteriol 173:417–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang D-J, Li X-J, He Y-Q, Feng J-X, Chen B, Tang J-L (2005) The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 18:652–658

    Article  PubMed  CAS  Google Scholar 

  • Teixido L, Carrasco B, Alonso JC, Barbe J, Campoy S (2011) Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS ONE 6:e19711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas CE, Sparling PF (1994) Identification and cloning of a fur homologue from Neisseria meningitidis. Mol Microbiol 11:725–737

    Article  PubMed  CAS  Google Scholar 

  • Thomas CE, Sparling PF, Thomas CE (1996) Isolation and analysis of a fur mutant of Neisseria gonorrhoeae. 178:4224–4232

    CAS  Google Scholar 

  • Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J 3rd, Brandt CC, Tiedje JM, Zhou J (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiss A, Barre O, Michaud-Soret I, Forest E (2005) Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Lett 579:5454–5460

    Article  PubMed  CAS  Google Scholar 

  • Traoré DAK, El Ghazouani A, Ilango S, Dupuy J, Jacquamet L, Ferrer JL, Caux-Thang C, Duarte V, Latour JM (2006) Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Molecular Microbiol 61: 1211–1219

  • Traoré DAK, El Ghazouani A, Jacquamet L, Borel F, Ferrer JL, Lascoux D, Ravanat JL, Jaquinod M, Blondin G, Caux-Thang C, Duarte V, Latour JM (2009) Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5:53–59

    Article  PubMed  CAS  Google Scholar 

  • Troxell B, Hassan HM (2013) Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59–59

    PubMed  PubMed Central  Google Scholar 

  • Venturi V, Ottevanger C, Bracke M, Weisbeek P (1995) Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Mol Microbiol 15:1081–1093

    Article  PubMed  CAS  Google Scholar 

  • Vliet AHMV, Wooldridge KG, Julian M (1998) Iron-responsive gene regulation in a Campylobacter jejuni fur Mutant. Society 180:5291–5298

    Google Scholar 

  • Wang F, Cheng S, Sun K, Sun L (2008) Molecular analysis of the fur (ferric uptake regulator) gene of a pathogenic Edwardsiella tarda strain. J Microbiol 46:350–355

    Article  PubMed  CAS  Google Scholar 

  • Wen YT, Tsou CC, Kuo HT, Wang JS, Wu JJ, Liao PC (2011) Differential secretomics of streptococcus pyogenes reveals a novel peroxide regulator (PerR)-regulated extracellular virulence factor mitogen factor3 (MF3). Mol Cell Proteom 10:M110.007013–M007110.007013

    Article  CAS  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974

    Article  PubMed  Google Scholar 

  • Wooldridge KG, Williams PH, Ketley JM (1994) Iron-responsive genetic regulation in campylobacter jejuni: clining and characterization of a fur homolog. J Bacteriol 176:5852–5856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong A, Singh VK, Cabrera G, Jayaswal RK (2000) Molecular characterization of the ferric-uptake regulator. Fur, from Staphylococcus aureus. Microbiology 146:659–668

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Ishimori K, O’Brian MR (2005) Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein. J Biol Chem 280:7671–7676

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Panek HR, O’Brian MR (2006) Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum. Mol Microbiol 60:209–218

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Liu Y, Chen L, Gao T, Hu B, Zhang D, Liu F (2007) Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. Curr Microbiol 54:307–314

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Genco CA (2012) Fur-mediated global regulatory circuits in pathogenic Neisseria species. J Bacteriol 194:6372–6381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Couture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvan, S., Butcher, J., Stintzi, A. et al. Variation on a theme: investigating the structural repertoires used by ferric uptake regulators to control gene expression. Biometals 31, 681–704 (2018). https://doi.org/10.1007/s10534-018-0120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0120-8

Keywords

Navigation