Skip to main content

Advertisement

Log in

Denitrification in a meromictic lake and its relevance to nitrogen flows within a moderately impacted forested catchment

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We analysed the spatial and temporal variability of benthic nitrogen fluxes and denitrification rates in a sub-alpine meromictic lake (Lake Idro, Italy), and compared in-lake nitrogen retention and loss with the net anthropogenic nitrogen inputs to the watershed. We hypothesized a low nitrogen retention and denitrification capacity due to meromixis. This results from nitrate supply from the epilimnion slowing down during stratification and oxygen deficiency inhibiting nitrification and promoting ammonium recycling and its accumulation. We also hypothesized a steep vertical gradient of sedimentary denitrification capacity, decreasing with depth and oxygen deficiency. These are important and understudied issues in inland waters, as climate change and direct anthropic pressures may increase the extent of meromixis. Nearshore sediments had high denitrification rates (87 mg m−2 day−1) and efficiency (~ 100%), while in the monimolimnion denitrification was negligible. The littoral zone, covering 10% of the lake surface, contributed ~50% of total denitrification, while the monimolimnion, which covered 70% of the sediment surface, contributed to < 13% of total denitrification. The persistent and expanding meromixis of Lake Idro is expected to further decrease its nitrogen removal capacity (31% of the incoming nitrogen load) compared to what has been measured in other temperate lakes. Values up to 60% are generally reported for other such lakes. Results of this study are relevant as the combination of anthropogenic pressures, climate change and meromixis may threaten the nitrogen processing capacity of lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewaters. 20th edn APHA Washington DC

  • Azzoni R, Nizzoli D, Bartoli M, Christian RR, Viaroli P (2015) Factors controlling benthic biogeochemistry in urbanized coastal systems: an example from Venice (Italy). Estuar Coast 38(3):1016–1031

    Article  Google Scholar 

  • Bartoli M, Racchetti E, Delconte CA, Sacchi E, Soana E, Laini A, Longhi D, Viaroli P (2012) Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 9(1):361–373

    Article  Google Scholar 

  • Bolpagni R (2013) Macrophyte richness and aquatic vegetation complexity of the Lake Idro (Northern Italy). Ann Bot 3:34–43

    Google Scholar 

  • Bower CE, Holm-Hansen T (1980) A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37(5):794–798

    Article  Google Scholar 

  • Boyer EW, Goodale CL, Jaworski NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57(1):137–169

    Article  Google Scholar 

  • Bruesewitz DA, Hamilton DP, Schipper LA (2011) Denitrification potential in lake sediment increases across a gradient of catchment agriculture. Ecosystems 14(3):341–352

    Article  Google Scholar 

  • Bruesewitz Denise A, Tank Jennifer L, Hamilton Stephen K (2012) Incorporating spatial variation of nitrification and denitrification rates into whole-lake nitrogen dynamics. J Geophys Res Biogeosci 117:G3

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96

    Article  Google Scholar 

  • Bussink DW, Oenema O (1988) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosyst 51(1):19

    Article  Google Scholar 

  • Chen F, Hou L, Liu M, Zheng Y, Yin G, Lin X, Zong H, Deng F, Gao J, Jiang X (2016) Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. J Geophys Res Biogeosci 121:451–465

    Article  Google Scholar 

  • Dalsgaard T, Nielsen LP, Brotas V, Viaroli P, Underwood GJC, Nedwell DB, Sundbäck K, Rysgaard S, Miles A, Bartoli M, Dong L, Thornton DCO, Ottosen LDM, Castaldelli G, Risgaard-Petersen N (2000) Protocol handbook for NICE-Nitrogen cycling in estuaries: a project under the EU research programme. Marine Science and Technology (MAST III). National Environmental Research Institute, Silkeborg, p 62

    Google Scholar 

  • Danis PA, Von Grafenstein U, Masson-Delmotte V, Planton S, Gerdeaux D, Moisselin JM (2004) Vulnerability of two European lakes in response to future climatic changes. Geophys Res Lett 31(21):L21507. https://doi.org/10.1029/2004GL020833

    Article  Google Scholar 

  • David MB, Wall LG, Royer TV, Tank JL (2006) Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecol Appl 16(6):2177–2190

    Article  Google Scholar 

  • EMEP (European Monitoring and Evaluation Programme) (2010) http://www.emep.int/

  • Eyre BD, Ferguson AJ (2009) Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia 629(1):137–146

    Article  Google Scholar 

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2010) http://www.fao.org/faostat

  • Ficker H, Luger M, Gassner H (2017) From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw Biol. https://doi.org/10.1111/fwb.12946

    Article  Google Scholar 

  • Finlay JC, Small GE, Sterner RW (2013) Human influences on nitrogen removal in lakes. Science 342(6155):247–250

    Article  Google Scholar 

  • Foley B, Jones ID, Maberly SC, Rippey B (2012) Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol 57(2):278–289

    Article  Google Scholar 

  • Francis TB, Schindler DE, Fox JM, Seminet-Reneau E (2007) Effects of urbanization on the dynamics of organic sediments in temperate lakes. Ecosystems 10:1057–1068

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Article  Google Scholar 

  • Gao W, Howarth RW, Hong B, Swaney DP, Guo HC (2014) Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China. Biogeosciences 11(16):4577–4586

    Article  Google Scholar 

  • Garibaldi L, Brizzio MC, Varallo A, Mosello R (1996) Water chemistry of the meromictic lake Idro (Northern Italy). Memorie Istituto Italiano di Idrobiol 54:77–96

    Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–2122

    Article  Google Scholar 

  • Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Syst Appl Microbiol 32(8):571–582

    Article  Google Scholar 

  • Han H, Allan JD (2008) Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction. Biogeochemistry 91(2–3):177–199

    Article  Google Scholar 

  • Han H, Allan JD (2012) Uneven rise in N inputs to the Lake Michigan Basin over the 20th century corresponds to agricultural and societal transitions. Biogeochemistry 109(1–3):175–187

    Article  Google Scholar 

  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93(1–2):143–157

    Article  Google Scholar 

  • Hofmann H, Lorke A, Peeters F (2008) Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613:85–96

    Article  Google Scholar 

  • Hong B, Swaney DP, Mörth CM, Smedberg E, Hägg HE, Humborg C, Howarth RW, Bouraoui F (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Mod 227:117–135

    Article  Google Scholar 

  • Hong B, Swaney DP, Howarth RW (2013) Estimating net anthropogenic nitrogen inputs to US watersheds: comparison of methodologies. Environ Sci Technol 47(10):5199–5207

    Article  Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1part2):364–376

    Article  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35(1):75–139

    Article  Google Scholar 

  • Howarth RW, Swaney D, Billen G, Garnier J, Hong B, Humborg C, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10(1):37–43

    Article  Google Scholar 

  • ISTAT (Italian National Institute of Statistics) (2010) http://dati.istat.it/

  • Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Noges T, Noges P, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Sousa Freitas FR, Kernan M, Søndergaard M, Beklioglu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750(1):201–227

    Article  Google Scholar 

  • Jones DB (1941) Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. US Department of Agriculture, Washington, DC, pp 1–22

    Google Scholar 

  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, McIntyre PB (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42(12):4981–4988

    Article  Google Scholar 

  • Lassaletta L, Romero E, Billen G, Garnier J, García-Gómez H, Rovira JV (2012) Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer. Biogeosciences 9(1):57–70

    Article  Google Scholar 

  • Lehmann MF, Simona M, Wyss S, Blees J, Frame CH, Niemann H, Veronesi M, Zopfi J (2015) Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front Earth Sci 3:45

    Article  Google Scholar 

  • Lombardy Region (2003) Regional plan for water protection Attachment 7 Available via http://www.reti.regione.lombardia.it/ALLEGATO 7 - Stima dei carichi effettivi di azoto e fosforo da agricoltura nelle acque di superficie

  • Matthews DA, Effler SW, Driscoll CT, O’Donnell SM, Matthews CM (2008) Electron budgets for the hypolimnion of a recovering urban lake, 1989–2004: response to changes in organic carbon deposition and availability of electron acceptors. Limnol Oceanogr 53(2):743–759

    Article  Google Scholar 

  • McCarthy MJ, Gardner WS, Lehmann MF, Guindon A, Bird DF (2016) Benthic nitrogen regeneration, fixation, and denitrification in a temperate, eutrophic lake: effects on the nitrogen budget and cyanobacteria blooms. Limnol Oceanogr 61:1406–1423

    Article  Google Scholar 

  • Mengis M, Gächter R, Wehrli B, Bernasconi S (1997) Nitrogen elimination in two deep eutrophic lakes. Limnol Oceanogr 42(7):1530–1543

    Article  Google Scholar 

  • Misselbrook TH, Sutton MA, Scholefield D (2004) A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20(4):365–372

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, MazzeoN Havens K, Lacerot G, Liu L, De Meester L, Paerl H, Scheffer M (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105

    Article  Google Scholar 

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS FEMS Microbiol Lett 86(4):357–362

    Article  Google Scholar 

  • Nizzoli D, Carraro E, Nigro V, Viaroli P (2010) Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res 44(9):2715–2724

    Article  Google Scholar 

  • Nizzoli D, Welsh DT, Longhi D, Viaroli P (2014) Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism, nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape: N assimilation versus N removal. Hydrobiologia 737(1):183–200

    Article  Google Scholar 

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20(1–2):3

    Article  Google Scholar 

  • Pina-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81(1):111–130

    Article  Google Scholar 

  • Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve JP (2006) Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). J Hydrol 326(1):295–310

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rempfer J, Livingstone DM, Blodau C, Forster R, Niederhauser P, Kipfer R (2010) The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future? Limnol Oceanogr 55(5):2170–2180

    Article  Google Scholar 

  • Revsbech NP, Risgaard-Petersen N, Schramm A, Nielsen LP (2006) Nitrogen transformations in stratified aquatic microbial ecosystems. Antonie Van Leeuwenhoek 90(4):361–375

    Article  Google Scholar 

  • Risgaard-Petersen N, Rysgaard S (1995) Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. Methods in applied soil microbiology. Academic Press, London, pp 1–13

    Google Scholar 

  • Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer RL (2003) Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol Oceanogr Methods 1(1):63–73

    Article  Google Scholar 

  • Rissanen AJ, Tiirola M, Hietanen S, Ojala A (2013) Interlake variation and environmental controls of denitrification across different geographical scales. Aquat Microb Ecol 69(1):1–16

    Article  Google Scholar 

  • Rogora M, Mosello R, Arisci S, Brizzio MC, Barbieri A, Balestrini R, Waldner P, Schmitt M, Stähli M, Thimonier A, Kalina M, Puxbaum H, Nickus U, Ulrich E, Probst A (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562(1):17–40

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Salmaso N, Buzzi F, Cerasino L, Garibaldi L, Leoni B, Morabito G, Rogora M, Simona M (2014) Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731(1):31–48

    Article  Google Scholar 

  • Saunders DL, Kalff J (2001) Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Res 35(8):1897–1904

    Article  Google Scholar 

  • Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):1857–1863

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090

    Article  Google Scholar 

  • Small GE, Cotner JB, Finlay JC, Stark RA, Sterner RW (2014) Nitrogen transformations at the sediment–water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 731(1):95–108

    Article  Google Scholar 

  • Soana E, Racchetti E, Laini A, Bartoli M, Viaroli P (2011) Soil budget, net export, and potential sinks of nitrogen in the Lower Oglio River Watershed (Northern Italy). CLEAN 39(11):956–965

    Google Scholar 

  • Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10(2):109–122

    Article  Google Scholar 

  • Wenk CB, Zopfi J, Gardner WS, McCarthy MJ, Niemann H, Veronesi M, Lehmann MF (2014) Partitioning between benthic and pelagic nitrate reduction in the Lake Lugano south basin. Limnol Oceanogr 59(4):1421–1433

    Article  Google Scholar 

  • Yan X, Cai Z, Yang R, Ti C, Xia Y, Li F, Wang J, Ma A (2011) Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China. Biogeochemistry 106(3):489–501

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Regione Lombardia within the SILMAS project (Sustainable Instruments for Lakes Management in the Alpine Space, Alpine Space Programme European territorial cooperation 2007–2013) and the POR FESR 2007–2013 Programme. We are very grateful to Daniele Magni and Clara Bravi for their support during the research activities and Prof. Robert R. Christian who kindly revised the manuscript and the English language. We also thank the Chiese Consortium and the Autonomous Province of Trento for providing data on Rivers Chiese and Caffaro discharges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Nizzoli.

Additional information

Responsible Editor: Charles T. Driscoll

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizzoli, D., Bartoli, M., Azzoni, R. et al. Denitrification in a meromictic lake and its relevance to nitrogen flows within a moderately impacted forested catchment. Biogeochemistry 137, 143–161 (2018). https://doi.org/10.1007/s10533-017-0407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0407-9

Keywords

Navigation