Skip to main content
Log in

Temporal scales of water-level fluctuations in lakes and their ecological implications

  • WATER-LEVEL FLUCTUATIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water-level fluctuations (WLF) of lakes have temporal scales ranging from seconds to hundreds of years. Fluctuations in the lake level generated by an unbalanced water budget resulting from meteorological and hydrological processes, such as precipitation, evaporation and inflow and outflow conditions usually have long temporal scales (days to years) and are here classified as long-term WLF. In contrast, WLF generated by hydrodynamic processes, e.g. basin-scale oscillations and travelling surface waves, have periods in the order of seconds to hours and are classified as short-term WLF. The impact of WLF on abiotic and biotic conditions depends on the temporal scale under consideration and is exemplified using data from Lake Issyk-Kul, the Caspian Sea and Lake Constance. Long-term WLF induce a slow shore line displacement of metres to kilometres, but immediate physical stress due to currents associated with long-term WLF is negligible. Large-scale shore line displacements change the habitat availability for organisms adapted to terrestrial and aquatic conditions over long time scales. Short-term WLF, in contrast, do not significantly displace the boundary between the aquatic and the terrestrial habitat, but impose short-term physical stress on organisms living in the littoral zone and on organic and inorganic particles deposited in the top sediment layers. The interaction of WLF acting on different time scales amplifies their overall impact on the ecosystem, because long-term WLF change the habitat exposed to the physical stress resulting from short-term WLF. Specifically, shore morphology and sediment grain size distribution are the result of a continuous interplay between short- and long-term WLF, the former providing the energy for erosion the latter determining the section of the shore exposed to the erosive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah, A. M. & D. R. Barton, 2003. Environmental factors controlling the distributions of benthic invertebrates on rocky shores of Lake Malawi, Africa. Journal of Great Lakes Research 29(suppl. 2): 202–215.

    Google Scholar 

  • Airoldi, L. & F. Cinelli, 1997. Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a mediterranean rocky shore. Journal of Experimental Marine Biology and Ecology 215: 269–288.

    Article  Google Scholar 

  • Asmus, R. M., M. H. Jensen, K. M. Jensen, E. Kristensen, H. Asmus & A. Wille, 1998. The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments. Estuarine, Coastal and Shelf Science 46: 221–232.

    Article  CAS  Google Scholar 

  • Bourne, J. K., K. Joel & G. Ludwig, 2005. Eccentric Salton Sea. National Geographic Magazine 207: 88–107.

    Google Scholar 

  • Braun, E. & K. Schärpf, 1990. Internationale Bodensee – Tiefenvermessung. IGKB – Internationale Gewässerschutzkommission für den Bodensee: 98.

  • Brennwald, M. S., et al., 2004. Atmospheric noble gases in lake sediment pore water as proxies for environmental change. Geophysical Research Letters 31: L04202.

    Article  CAS  Google Scholar 

  • Brown, E., A. Colling, D. Park, J. Phillips, D. Rothery & J. Wright, 2005. Waves, Tides and Shallow-Water Processes, 2nd edn. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Bürgi, J. & H. Schlichterle, 1986. Gefährdete Ufersiedlungen am Bodensee. Archäologie der Schweiz 9: 34–41.

    Google Scholar 

  • Cattaneo, A., 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206: 1–10.

    Article  Google Scholar 

  • Clark, B. M., 1997. Variation in surf-zone fish community structure across a wave-exposure gradient. Estuarine, Coastal and Shelf Science 44: 659–674.

    Article  Google Scholar 

  • Coe, M. T. & J. A. Foley, 2001. Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research 106: 3349–3356.

    Article  Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506: 23–27.

    Article  Google Scholar 

  • Dera, J. & H. R. Gordon, 1968. Light fluctuations in the photic zone. Limnology and Oceanography 13: 697–699.

    Google Scholar 

  • Dumont, H., 1995. Ecocide in the Caspian Sea. Nature 377: 673–674.

    Article  CAS  Google Scholar 

  • Eggleton, M. A., K. B. Gido, W. J. Matthews & G. D. Schnell, 2004. Assessment of anthropogenic influences on littoral-zone aquatic communities of Lake Texoma, Oklahoma-Texas, USA. Ecohydrology and Hydrobiology 4: 103–117.

    Google Scholar 

  • Emery, W. J. & R. E. Thomson, 2001. Data analysis methods in physical oceanography, 2nd edn. Elsevier Science, Amsterdam.

    Google Scholar 

  • Eriksson, B. K., A. Sandström, M. Isæus, H. Schreiber & P. Karås, 2004. Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine, Coastal and Shelf Science 61: 339–349.

    Article  Google Scholar 

  • Erm, A. & T. Soomere, 2006. The impact of fast ferry traffic on underwater optics and sediment resuspension. Oceanologia 48(suppl.): 283–301.

    Google Scholar 

  • Fenton, J. D. & W. D. McKee, 1990. On calculating the lengths of water waves. Coastal Engineering 14: 499–513.

    Article  Google Scholar 

  • Francoeur, S. & B. Biggs, 2006. Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia 561: 59–69.

    Article  Google Scholar 

  • Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. Journal of Fish Biology 41: 863–871.

    Article  Google Scholar 

  • Guganesharajah, K. & E. M. Shaw, 1984. Forecasting water levels for Lake Chad. Water Resources Research 20: 1053–1065.

    Article  Google Scholar 

  • Hallermeier, R. J., 1980. Sand motion initiation by water waves: two asymtotes. Journal of the Waterway, Port, Coastal, and Ocean Division 106: 299–318.

    Google Scholar 

  • Heyer, J. & U. Berger, 2000. Methane emission from the coastal area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science 51: 13–30.

    Article  CAS  Google Scholar 

  • Hofmann, H., A. Lorke & F. Peeters, 2008. The relative importance of wind and ship waves in the littoral zone of a large lake. Limnology and Oceanography 53: 368–380.

    Google Scholar 

  • Hofmann, H., A. Lorke & F. Peeters, in press. Wave-induced variability of the underwater light climate in the littoral zone. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 30(part 4).

  • Hollan, E., D. B. Rao & E. Bäuerle, 1981. Free surface oscillations in Lake Constance with an interpretation of the “Wonder of the Rising Water” at Konstanz in 1549. Meteorology and Atmospheric Physics 29: 301–325.

    Google Scholar 

  • Hunt, P. C. & J. W. Jones, 1972. The effect of water level fluctuations on a littoral fauna. Journal of Fish Biology 4: 385–394.

    Article  Google Scholar 

  • IGKB, 2002. Tolerierbare Phosphor-Fracht des Bodensee-Obersees. In Bührer, H. (ed.), Bericht der Internationalen Gewässerschutzkommission für den Bodensee 54: 81.

  • Jöhnk, K. D., D. Straile & W. Ostendorp, 2004. Water level variability and trends in Lake Constance in the light of the 1999 centennial flood. Limnologica 34: 15–21.

    Google Scholar 

  • Khodorevskaya, R. P. & Y. V. Krasikov, 1999. Sturgeon abundance and distribution in the Caspian Sea. Journal of Applied Ichthyology 15: 106–113.

    Article  Google Scholar 

  • Klige, R. K. & M. S. Myagkov, 1992. Changes in the water regime of the Caspian Sea. GeoJournal 27: 299–307.

    Article  Google Scholar 

  • Körninger, J., 2005. Unterwasserarchäologie am Überlinger See. NAU Nachrichtenblatt Arbeitskreis Unterwasserarchäologie 11/12: 63–70.

    Google Scholar 

  • Kosarev, A. N. & E. A. Yablonskaya, 1994. The Caspian Sea. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Kotowski, W. & H. Pioŕkowski, 2005. Competition and succession affecting vegetation structure in riparian environments: implications for nature management. Ecohydrology and Hydrobiology 5: 51–57.

    Google Scholar 

  • Kundu, P. K. & I. M. Cohen, 2002. Fluid Mechanics. Academic Press, London.

    Google Scholar 

  • Lerman, A., D. M. Imboden & J. R. Gat, 1995. Physics and Chemistry of Lakes, 2nd edn. Springer, Berlin.

    Google Scholar 

  • Li, Y., A. J. Mehta, K. Hatfield & M. S. Dortch, 1997. Modulation of constituent release across the mud-water interface by water waves. Water Resources Research 33: 1409–1418.

    Article  Google Scholar 

  • Lorke, A., B. Müller, M. Maerki & A. Wüest, 2003. Breathing sediments: the control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnology and Oceanography 48: 2077–2085.

    Google Scholar 

  • Luettich R. A. Jr., D. R. F. Harleman & L. Somlyody, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.

    Article  Google Scholar 

  • Luft, G. & G. van den Eertwegh, 1991. Long-term changes in the water level of Lake Constance and possible causes. Hydrology of Natural and Manmade Lakes. In Schiller, G., Lemmelä, R. & Spreafico, M. (eds.). IAHS Press, Wallingford, England: 31–44.

  • Luft, G. & H. Vieser, 1990. Veränderung der Bodensee-Wasserstände von 1887 bis 1987. Deutsche Gewässerkundliche Mitteilungen 34: 148–156.

    Google Scholar 

  • McGowan, S., P. R. Leavitt & R. I. Hall, 2005. A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8: 694–708.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1974. Lake hydrodynamics. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 124–197.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.

    Article  Google Scholar 

  • Peeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone & R. Kipfer, 2003. Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnology and Oceanography 48: 1419–1431.

    Google Scholar 

  • Peeters, F., et al., 2000. Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Research-Part I 47: 621–654.

    Article  CAS  Google Scholar 

  • Precht, E., U. Franke, L. Polerecky & M. Huettel, 2004. Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnology and Oceanography 49: 693–705.

    CAS  Google Scholar 

  • Precht, E. & M. Huettel, 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnology and Oceanography 48: 1674–1684.

    Google Scholar 

  • Rodionov, S. N., 1994. Global and Regional Climate Interaction: The Caspian Sea Experience. Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Romero, J. R. & J. M. Melack, 1996. Sensitivity of vertical mixing in a large saline lake to variations in runoff. Limnology and Oceanography 41: 955–965.

    Article  CAS  Google Scholar 

  • Scheifhacken, N., 2006. Life at Turbulent Sites: Benthic Communities in Lake Littorals Interacting with Abiotic and Biotic Constraints. PhD Thesis, University of Konstanz.

  • Schmieder, K., M. Dienst, W. Ostendorp & K. Jöhnk, 2004. Effects of water level variations on the dynamics of the reed belts of Lake Constance. Ecohydrology and Hydrobiology 4: 469–480.

    Google Scholar 

  • Schubert, H., S. Sagert & R. M. Forster, 2001. Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research 55: 12–55.

    Article  Google Scholar 

  • Schulz, M., E. Faber, A. Hollerbach, H. G. Schroeder & H. Guede, 2001. The methane cycle in the epilimnion of Lake Constance. Archiv für Hydrobiologie 151: 157–176.

    CAS  Google Scholar 

  • Soomere, T., 2005. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environmental Fluid Mechanics 5: 293–323.

    Article  Google Scholar 

  • Stephens, D. W., 1990. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847–1987. Hydrobiologia 197: 139–146.

    Article  CAS  Google Scholar 

  • Stramski, D. & L. Legendre, 1992. Laboratory simulation of light-focusing by water-surface waves. Marine Biology 114: 341–348.

    Article  Google Scholar 

  • Tsigelnaya, I. D., 1995. Issyk-Kul Lake. In Maudych, A. F. (ed.), Enclosed seas and Large Lakes of Eastern Europe and Middle Asia. SPB Academic Publishing, Amsterdam: 199–229.

    Google Scholar 

  • Usmanova, R. M., 2003. Aral Sea and sustainable development. Water Science and Technology 47: 41–47.

    PubMed  CAS  Google Scholar 

  • van Duin, E. H. S., et al., 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444: 25–42.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology – Lake and River Ecosystems. Academic Press, London.

    Google Scholar 

  • Zavialov, P. O., et al., 2003. Hydrographic survey in the dying Aral Sea. Geophysical Research Letters 30: 1659.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Georg Heine and his colleagues from the electronic and mechanical workshop at the University of Konstanz for technical assistance and the development of the pressure sensors. We gratefully acknowledge the help of the technical staff at the Limnological Institute and many students during fieldwork and data analysis. We thank the two anonymous referees whose valuable comments improved the manuscript. The gauge Konstanz water level time series between 1817 and 2005 was provided by the State Institute for Environment, Measurements and Nature Conservation Baden-Württemberg (LUBW). This work was supported by the German Research Foundation (DFG) within the framework of the Collaborative Research Centre 454 “Littoral Zone of Lake Constance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar Hofmann.

Additional information

Guest editors: K. M. Wantzen, K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.-Tóth & P. Fischer

Ecological Effects of Water-Level Fluctuations in Lakes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, H., Lorke, A. & Peeters, F. Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613, 85–96 (2008). https://doi.org/10.1007/s10750-008-9474-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9474-1

Keywords

Navigation