Skip to main content
Log in

Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In situ bioaugmentation with aerobic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacteria is being considered for treatment of explosives-contaminated groundwater at Umatilla Chemical Depot, Oregon (UMCD). Two forced-gradient bacterial transport tests of site groundwater containing chloride or bromide tracer and either a mixed culture of Gordonia sp. KTR9 (xplA +KmR), Rhodococcus jostii RHA1 (pGKT2 transconjugant; xplA +KmR) and Pseudomonas fluorescens I-C (xenB +), or a single culture of Gordonia sp. KTR9 (xplA +; i.e. wild-type) were conducted at UMCD. Groundwater monitoring evaluated cell viability and migration in the injection well and downgradient monitoring wells. Enhanced degradation of RDX was not evaluated in these demonstrations. Quantitative PCR analysis of xplA, the kanamycin resistance gene (aph), and xenB indicated that the mixed culture was transported at least 3 m within 2 h of injection. During a subsequent field injection of bioaugmented groundwater, strain KTR9 (wild-type) migrated up to 23-m downgradient of the injection well within 3 days. Thus, the three RDX-degrading strains were effectively introduced and transported within the UMCD aquifer. This demonstration represents an innovative application of bioaugmentation to potentially enhance RDX biodegradation in aerobic aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andeer P, Stahl D, Bruce N, Strand S (2009) Lateral transfer of genes for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. Appl Environ Microbiol 75:3258–3262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arcadis (2004) In-situ enhanced anaerobic explosive treatment field test report, Milan Army Ammunition Plant Milan, Tennessee. Prepared for: United States Army Environmental Center, Prepared by: ARCADIS G&M, Inc. 114 Lovell Road, Suite 202 Knoxville Tennessee 37922, MD000730.0001, October 2004

  • Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Blehert DS, Knoke KL, Fox BG, Chambliss GH (1997) Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol 179:6912–6920

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167

    Article  Google Scholar 

  • Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290

    Article  CAS  PubMed  Google Scholar 

  • Crocker FH, Indest KJ, Jung CM, Hancock DE, Merritt ME, Florizone C, Chen H-P, Stewart GR, Zhu S, Sukdeo N, Fortin M-C, Hallam SJ, Mohn WW, Eltis LD, Perreault NN, Zhao J-S, Paquet L, Halasz A, Hawari J (2012) Identification of microbial gene biomarkers for in situ RDX biodegradation. ERDC/EL-TR-12-33 Engineer Research and Development Center, Vicksburg, MS

  • Da Silva ML, Alvarez PJ (2004) Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70:4720–4726

    Article  PubMed Central  PubMed  Google Scholar 

  • Dionisi HM, Harms G, Layton AC, Gregory IR, Parker J, Hawkins SA, Robinson KG, Sayler GS (2003) Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl Environ Microbiol 69:6597–6604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong H, Rothmel RK, Onstott TC, Fuller ME, DeFlaun MF, Dunlap R, Fletcher M (2002) Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: biological effects and numerical modeling. Appl Environ Microbiol 68:2120–2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004) Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70:1123–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84:535–544

    Article  CAS  PubMed  Google Scholar 

  • Fuller ME, McClay K, Higham M, Hatzinger PB, Steffan RJ (2010) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) bioremediation in groundwater: are known RDX-degrading bacteria the dominant players? Bioremediation J 14:121–134

    Article  CAS  Google Scholar 

  • Fuller ME, Hatzinger PB, Condee CW, Andaya C, Vainberg S, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Eaton H, Istok JD (2015) Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 26:77–89

    Article  CAS  PubMed  Google Scholar 

  • Hareland WA, Crawford RL, Chapman PJ, Dagley S (1975) Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol 121:272–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatzinger P, Lippincott D (2012) In situ bioremediation of energetic compounds in groundwater. Project ER-200425 Final Report. Environmental Security Technology Certification Program

  • Jung CM, Crocker FH, Eberly JO, Indest KJ (2011) Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 110:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Lippincott D, Streger SH, Schaefer CE, Hinkle J, Stormo J, Steffan RJ (2015) Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane. Ground Water Monit Remed. doi:10.1111/gwmr.12093

    Google Scholar 

  • Livermore JA, Jin YO, Arnseth RW, LePuil M, Mattes TE (2013) Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater. Environ Sci Technol 47:7672–7678

    Article  CAS  PubMed  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    Article  CAS  PubMed  Google Scholar 

  • Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, MacMillan DK (2005) Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J Appl Toxicol 25:427–434

    Article  CAS  PubMed  Google Scholar 

  • Michalsen MM, Weiss R, King A, Gent D, Medina VF, Istok JD (2013) Push–pull tests for estimating RDX and TNT degradation rates in groundwater. Groundw Monit Remed 33:61–68

    CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salanitro J, Johnson P, Spinnler GE, Maner PM, Wisniewski HL, Bruce CL (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162

    Article  CAS  Google Scholar 

  • Schaefer CE, Lippincott D, Steffan RJ (2010) Field scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Groundw Monit Remed 30:113–124

    Article  CAS  Google Scholar 

  • Scheibe TD, Hailiang D, Xie YL (2007) Correlation between bacterial attachment rate coefficients and hydraulic conductivity and its effect on field-scale bacterial transport. Adv Water Resour 30:1571–1582

    Article  Google Scholar 

  • Seth-Smith H, Edwards J, Rosser S, Rathbone D, Bruce N (2008) The explosive degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stroo H, Leeson A, Ward CH (eds) (2013) Bioaugmentation for Groundwater Remediation. Springer, New York

    Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trotsky J, Wymore RA, Lamar MR, Sorenson KS (2010) A low-cost, passive approach for bacterial growth and distribution for large-scale implementation of bioaugmentation. Final Report. ESTCP, Arlington, VA, USA. http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/ER-200513. Accessed 25 Sept 2014

  • URS (2008) Subsurface injection annual report OU1 Remedial Action Operation Cornhusker Army Ammunition Plant Grand Island, Nebraska U.S. Army Corps of Engineers, Omaha District Contract W9128F-D-0004, Delivery Order 0025

  • USACE (2010) Third Five-Year Review Report for the Umatilla Chemical Depot, Hermiston, Hermiston and Morrow Counties, Oregon. Prepared by the USACE Seattle District, Seattle, WA, March 2010

  • Wani AH, O’Neal BR, Davis JL, Hansen LD (2002) Treatability study for biologically active zone enhancement (BAZE) for in situ RDX degradation in groundwater. ERDC/EL TR-02-35, U.S. Army Engineer Research and Development Center, Vicksburg, MS

Download references

Acknowledgments

This project was supported by the Environmental Security Technology Certification Program (ESTCP) under project ER-201207 “Bioaugmentation for Bioremediation of Aerobic RDX-Contaminated Groundwater”. Views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of Defense position or decision unless so designated by other official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona H. Crocker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crocker, F.H., Indest, K.J., Jung, C.M. et al. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 26, 443–451 (2015). https://doi.org/10.1007/s10532-015-9746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9746-1

Keywords

Navigation