Skip to main content
Log in

RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in laboratory columns following biostimulation and bioaugmentation was investigated using sediment and groundwater from a contaminated aquifer at a US Navy facility. No RDX degradation was observed following aerobic biostimulation with either fructose or lactate (both 0.1 mM) prior to bioaugmentation. Replicate columns were then bioaugmented with either Gordonia sp. KTR9, Pseudomonas fluorescens I-C (Ps I-C), or both strains. Under aerobic conditions (influent dissolved oxygen (DO) >6 mg/L), RDX was degraded following the addition of fructose, and to a lesser extent with lactate, in columns bioaugmented with KTR9. No degradation was observed in columns bioaugmented with only Ps I-C under aerobic conditions, consistent with the known anaerobic RDX degradation pathway for this strain. When influent DO was reduced to <2 mg/L, good RDX degradation was observed in the KTR9-bioaugmented column, and some degradation was also observed in the Ps I-C-bioaugmented column. After DO levels were kept below 1 mg/L for more than a month, columns bioaugmented with KTR9 became unresponsive to fructose addition, while RDX degradation was still observed in the Ps I-C-bioaugmented columns. These results indicate that bioaugmentation with the aerobic RDX degrader KTR9 could be effective at sites where site geology or geochemistry allow higher DO levels to be maintained. Further, inclusion of strains capable of anoxic RDX degradation such as Ps I-C may facilitate bimodal RDX removal when DO levels decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian N, Sutherland K (1999) RDX biodegradation by a methanogenic enrichment culture obtained from an explosives manufacturing wastewater treatment plant. U.S. Army Corps of Engineers, Construction Engineering Research Laboratories, Washington, D.C., USA

  • Arnett CM, Adrian NR (2009) Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20:15–26

    Article  CAS  PubMed  Google Scholar 

  • Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Bolster CH, Mills AL, Hornberger GM, Herman JS (2001) Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. J Contam Hydrol 50:287–305. doi:10.1016/S0169-7722(01)00106-1

    Article  CAS  PubMed  Google Scholar 

  • Brannon J, Myers T (1997) Review of fate and transport process of explosives. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA

  • Brown D, Jaffé P (2001) Effects of nonionic surfactants on bacterial transport through porous media. Environ Sci Technol 35:3877–3883

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contamination on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21

    Article  CAS  PubMed  Google Scholar 

  • Crocker FH, Indest KJ, Jung CM, Hancock DE, Fuller ME, Hatzinger PB, Vainberg S, Istok JD, Wilson E, Michalsen MM (2015) Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 26:443–451

    Article  CAS  PubMed  Google Scholar 

  • DeFlaun M, Tanzer A, McAteer A, Marshall B, Levy S (1990) Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens. Appl Environ Microbiol 56:112–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Rothmel RK, Onstott TC, Fuller ME, DeFlaun MF, Dunlap R, Fletcher M (2002) Simultaneous transport of two bacterial strains in intact cores from oyster, Virginia: biological effects and numerical modeling. Appl Environ Microbiol 68:2120–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes DE, Mills AL, Hornberger GM, Herman JS (1991) Physical and chemical factors influencing transport of microorganisms through porous media. Appl Environ Microbiol 57:2473–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller ME, Dong H, Mailloux BJ, Onstott TC, DeFlaun MF (2000) Examining bacterial transport in intact cores from oyster, Virginia: effect of sedimentary facies type on bacterial breakthrough and retention. Water Resour Res 36:2417–2431

    Article  CAS  Google Scholar 

  • Fuller ME, Hatzinger PB, Condee CW, Andaya C, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Eaton H, Istok JD (2015) Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 26:77–89

    Article  CAS  PubMed  Google Scholar 

  • Fuller ME, Hawari J, Perreault N (2010) Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett Appl Microbiol 51:313–318

    Article  CAS  PubMed  Google Scholar 

  • Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84:535–544

    Article  CAS  PubMed  Google Scholar 

  • Hatzinger PB, Lippincott D (2012) In situ bioremediation of energetic compounds in groundwater Environmental Security Technology Certification Program (ESTCP). https://serdp.org/content/download/15135/173725/file/ER-200425-FR.pdf

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75

    Article  CAS  PubMed  Google Scholar 

  • Indest KJ, Hancock DE, Jung CM, Eberly JO, Mohn WW, Eltis LD, Crocker FH (2013) Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9. Appl Environ Microbiol 79:1746–1750. doi:10.1128/aem.03905-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indest KJ, Jung CM, Chen H-P, Hancock D, Florizone C, Eltis LD, Crocker FH (2010) Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 76:6329–6337. doi:10.1128/aem.01217-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci 104:16822–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalsen MM, King AS, Rule RA, Fuller ME, Hatzinger PB, Condee CW, Crocker FH, Indest KJ, Jung CM, Istok JD (2016) Evaluation of biostimulation and bioaugmentation to stimulate hexahydro-1,3,5-trinitro-1,3,5,-triazine degradation in an aerobic groundwater aquifer. Environ Sci Technol 50:7625–7632. doi:10.1021/acs.est.6b00630

    Article  CAS  PubMed  Google Scholar 

  • Michalsen MM, Weiss R, King A, Gent D, Medina VF, Istok JD (2013) Push-pull tests for estimating RDX and TNT degradation rates in groundwater. Groundwater Monitoring & Remediation 33:61–68. doi:10.1111/gwmr.12016

    CAS  Google Scholar 

  • Mills A, Herman J, Hornberger G, de Jesus T (1994) Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand. Appl Environ Microbiol 60:3300–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newell C (2008) Treatment of RDX & HMX plumes using mulch biowalls. Environmental Security Technology Certification Program (ESTCP). https://serdp.org/content/download/4725/68763/file/ER-0426-FR.pdf

  • Pennington JC, Jenkins TF, Ampleman G, Thiboutot S, Brannon JM, Lynch J, Ranney TA, Stark JA, Walsh ME, Lewis J, Hayes CA, Mirecki JE, Hewitt AD, Perron N, Lambert D, Clausen JJ, Delfino J (2002) Distribution and fate of energetics on DoD test and training ranges: Interim Report 2. U.S Army Engineer Research and Development Center, Vicksburg, MS, USA

  • Pennington JC, Jenkins TF, Brannon JM, Lynch J, Ranney TA, Berry TE, Jr., Hayes CA, Miyares PH, Walsh ME, Hewitt AD, Perron N, Delfino J (2001) Distribution and fate of energetics on DoD test and training ranges: Interim Report 1. U.S Army Engineer Research and Development Center, Vicksburg, MS, USA

  • Priestley JT, Coleman NV, Duxbury T (2006) Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand. Biodegradation 17:571–576

    Article  CAS  PubMed  Google Scholar 

  • Ronen Z, Yanovich Y, Goldin R, Adar E (2008) Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Chemosphere 73:1492–1498

    Article  CAS  PubMed  Google Scholar 

  • Seth-Smith HMB, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552. doi:10.1128/aem.00391-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579. doi:10.1128/aem.68.11.5571-5579.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade R, Davis JL, Wani AH, Felt D (2010) Biologically active zone enhancement (BAZE) for in situ RDX degradation in ground water. Environmental Security Technology Certification Program (ESTCP). https://serdp.org/content/download/4116/62993/file/ER-0110-FR.pdf

  • Yamamoto H, Morley MC, Speitel GE Jr, Clausen J (2004) Fate and transport of high explosives in a sandy soil. Adsorption and desorption Soil Sediment Contam 13:459–477

    CAS  Google Scholar 

  • Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-S, Paquet L, Halasz A, Manno D, Hawari J (2004) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu S-H, Reuther J, Liu J, Crocker FH, Indest KJ, Eltis LD, Mohn WW (2014) The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9. Appl Microbiol Biotechnol 99:459–467. doi:10.1007/s00253-014-6013-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of Defense position or decision unless so designated by other official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Fuller.

Ethics declarations

Funding

This project was supported by the Navy Environmental Sustainability Development to Integration (NESDI) Program under contract N39430-14-C-1518.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

.

ESM 1

(PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, M.E., Hatzinger, P.B., Condee, C.W. et al. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol 101, 5557–5567 (2017). https://doi.org/10.1007/s00253-017-8269-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8269-6

Keywords

Navigation