Skip to main content

Advertisement

Log in

In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The high endemism, the natural habitat degradation, and the over-collection for ornamental purposes have led some species such as Melocactus paucispinus and Melocactus glaucescens to be threatened with extinction. The use of in vitro conservation techniques, such as slow growth storage, promotes the preservation of genetic diversity with integrity. The goal of this study was to establish a strategy for in vitro conservation of apical segments of the cladode of M. paucispinus and M. glaucescens and evaluate the genetic diversity of individuals from in vitro germinated plants. For such purpose, different concentrations of the plant regulator ancymidol and the osmotic agent sucrose on the inhibition of the in vitro growth were tested, and the genetic diversity of M. paucispinus and M. glaucescens individuals stored in vitro was evaluated. Sucrose showed higher efficiency in the reduction of growth than ancymidol for both species. However, due to the reduction in survival percentage, the use of sucrose over 75 g L−1 in the in vitro conservation of both species for 360 days is not recommended. In the genetic diversity analysis, 76.92% of polymorphic loci (P), expected heterozygosity (He) = 0.276 and Shannon index (S) = 0.414 were observed for M. paucispinus. For M. glaucescens, the observed values were P = 95.38%, He = 0.228 and S = 0.369. These values observed here were higher than those previously found for the natural populations of these species, which demonstrated that this in vitro collection showed genetic diversity and can be used in management and reintroduction programs of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Barrios D, Sánchez JA, Flores J, Jurado E (2020) Seed traits and germination in the Cactaceae family: a review across the Americas. Bot Sci 98(3):417–440. https://doi.org/10.17129/botsci.2501

    Article  Google Scholar 

  • Caldas LS, Haridasan P, Ferreira ME (1998) Meios nutritivos. In: Torres AC, Caldas LS, Buso JA (eds) Cultura de tecidos e transformação genética de plantas, vol 1. Embrapa SPI/Embrapa-CNPH, Brasília, pp 87–132

    Google Scholar 

  • Caruso M, Currò S, Las Casas G et al (2010) Microsatellite markers help to assess genetic diversity among Opuntia ficus-indica cultivated genotypes and their relation with related species. Plant Syst Evol 290:85–97

    Article  Google Scholar 

  • Carvalho V, Santos DS, Nievola CC (2014) In vitro storage under slow growth and ex vitro acclimatization of the ornamental bromeliad Acanthostachys strobilacea. S Afr J Bot 92:39–43. https://doi.org/10.1016/j.sajb.2014.01.011

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation method for small quantities of fresh tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitro Cell Dev Biol-Plant 47:5–16. https://doi.org/10.1007/s11627-010-9327-2

    Article  Google Scholar 

  • Ferreira EB, Cavalvanti PP, Nogueira DA (2018) ExpDes.pt: pacote experimental designs (Portuguese). R package version 1.2.0. https://CRAN.R-project.org/package=ExpDes.pt

  • Fonseca RBS, Funch LS, Borba EL (2012) Dispersão de sementes de Melocactus glaucescens e M. paucispinus (Cactaceae), no Município de Morro do Chapéu, Chapada Diamantina—BA. Acta Bot Bras 26(2):481–492

    Article  Google Scholar 

  • Ganopoulos I, Kalivas A, Kavroulakis N, Xanthopoulou A, Mastrogianni A, Koubouris G, Madesis P (2015) Genetic diversity of Barbary fig (Opuntia ficus-indica) collection in Greece with ISSR molecular markers. Plant Gene 2:29–33. https://doi.org/10.1016/j.plgene.2015.04.001

    Article  Google Scholar 

  • Godínez-Álvarez H, Valverde T, Ortega-Baes P (2003) Demographic trends in the Cactaceae. Bot Rev 69(2):173–203

    Article  Google Scholar 

  • Goettsch B, Taylor CH, Piñón GC et al (2015) High proportion of cactus species threatened with extinction. Nat Plants. https://doi.org/10.1038/NPLANTS.2015.142

    Article  PubMed  Google Scholar 

  • Grover A, Sharma PC (2016) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36(2):290–302

    Article  CAS  Google Scholar 

  • IUCN (2020) IUCN Red list of threatened species. version 2020.1. https://www.iucnredlist.org/. Accessed 22 Apr 2020

  • Junqueira KP, Faleiro FG, Junqueira NTV et al (2010) Diversidade genética de pitayas nativas do Cerrado com base em marcadores RAPD. Rev Bras Frutic 32(3):819–824

    Article  Google Scholar 

  • Lambert SM, Borba EL, Machado MC et al (2006a) Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantina, North-eastern, Brazil. Ann Bot 97:389–403

    Article  CAS  Google Scholar 

  • Lambert S, Borba MEL, Machado MC (2006b) Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of Melocactus x albicephalus (Melocactus ernestii x M. glaucescens) in north-eastern Brazil. Plant Species Biol 21:93–108

    Article  Google Scholar 

  • Lima-Brito A, Albuquerque MM, Alvim BFM et al (2011) Agentes osmóticos e temperatura na conservação in vitro de sempre-viva. Ciên RURAL 41:1354–1361

    Article  CAS  Google Scholar 

  • Luna-Paez A, Valadez-Moctezuma E, Barrientos-Priego AF et al (2007) Caracterización de Opuntia spp. mediante semilla con marcadores RAPD e ISSR y su posible uso para diferenciación. J Prof Assoc Cactus Dev 9: 43–59

    Google Scholar 

  • Machado MC (2009) The genus Melocactus in eastern Brazil: part I—an introduction to Melocactus. Brit Cact Succ J 27:1–16

    Google Scholar 

  • Martín C, Senula A, González I, Acosta A, Keller RJ, González-Benito ME (2013) Genetic identity of three mint accessions stored by different conservation procedures: field collection, in vitro and cryopreservation. Genet Resour Crop Evol 60:243–249. https://doi.org/10.1007/s10722-012-9830-x

    Article  Google Scholar 

  • Mashope BK (2007) Characterization of cactus pear germplasm in South Africa. Thesis of Philosophiae. Doctor, University of the Free State

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nascimento JPB, Meiado MV, Siqueira-Filho JA (2018) Seed germination of three endangered subspecies of Discocactus Pfeiff. (Cactaceae) in response to environmental factors. J Seed Sci 40(3):253–262. https://doi.org/10.1590/2317-1545v40n3183036

    Article  Google Scholar 

  • Nick C, Silva DJH, Mattedi AP et al (2010) Conservação ex situ dos recursos fitogenéticos. In: Pereira TNS (ed) Germoplasma: conservação, manejo e uso no melhoramento de plantas. Arca, Viçosa, pp 59–88

    Google Scholar 

  • Oliveira FIC, Bordallo PN, Castro ACR et al (2013) Genetic diversity of spineless Cereus jamacaru accessions using morphological and molecular markers. Genet Mol Res 12(4):4586–4594

    Article  CAS  Google Scholar 

  • Ozudogru E, Ozden-Tokatli Y, Gumusel F, Benelli C, Lambardi M (2009) Development of a cryopreservation procedure for peanut (Arachis hypogaea L.) embryonic axes and its application to local Turkish germplasm. Adv Hortic Sci 23(1):41–48

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlex 6.5: genetic in Excel. Population genetic software for teching and research-an update. Bioinformatics 29(19):2537–2639

    Article  Google Scholar 

  • Pérez-Molphe-Balch E, Pérez-Reyes ME, De La Rosa-Carrillo ML (2012) In vitro conservation of Turbinicarpus (Cactaceae) under slow growth conditions. Haseltonia 17:51–57

    Article  Google Scholar 

  • Pérez-Molphe-Balch E, Santos-Díaz MS, Ramírez-Malagón R et al (2015) Tissue culture of ornamental cacti. Sci Agric 72(6):540–561

    Article  Google Scholar 

  • Rademacher W (2016) Chemical regulators of gibberellin status and their application in plant production. Annu Plant Rev 49:359–403

    Article  CAS  Google Scholar 

  • R Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 10 July 2020

  • Rao RV, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68:1–19. https://doi.org/10.1023/A:1013359015812

    Article  Google Scholar 

  • Sarkar D, Chakrabarti SK, Naik PS (2001) Slow-growth conservation of potato microplants: efficacy of ancymidol for long-term storage in vitro. Euphytica 117:133–142

    Article  CAS  Google Scholar 

  • Silva TS, Nepomuceno CF, Soares TL et al (2019) In vitro conservation of Poincianella pyramidalis (Tul.) L.P. Queiroz under minimal growth conditions. Ciênc Agrotec 43:e014519

    Article  Google Scholar 

  • Teixeira SL, Ribeiro JM, Teixeira MT (2006) Influence of NaClO on nutrient medium sterilization and on pineapple (Ananas comosus cv Smooth cayenne) behavior. Plant Cell Tissue Organ Cult 86:375–378

    Article  CAS  Google Scholar 

  • Thakur S, Tiwari KL, Jadhav SK (2015) In vitro approaches for conservation of Asparagus racemosus Willd. Vitro Cell Dev Biol-Plant 51:619–625

    Article  Google Scholar 

  • Torres-Silva G, Resende SV, Lima-Brito A et al (2018) In vitro shoot production, morphological alterations and genetic instability of Melocactus glaucescens (Cactaceae), an endangered species endemic to eastern Brazil. S Afr J Bot 115:100–107

    Article  CAS  Google Scholar 

  • Torres-Silva G, Matos EM, Correia LF, Fortini EA, Soares WS, Batista DS, Otoni CG, Azevedo AA, Viccini LF, Koehler AD, Resende SV, Specht CD (2020) Anatomy, flow cytometry, and x-ray tomography reveal tissue organization and ploidy distribution in long-term in vitro cultures of Melocactus species. Front Plant Sci 11:1314. https://doi.org/10.3389/fpls.2020.01314

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyagi RK, Goswami TR, Sanayaima R et al (2009) Micropropagation and slow growth conservation of cardamom (Elettaria cardamomum Maton). Vitro Cell Dev Biol-Plant 45:721–729

    Article  Google Scholar 

  • Volis S, Blecher M (2010) Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodivers Conserv 19:2441–2454. https://doi.org/10.1007/s10531-010-9849-2

    Article  Google Scholar 

  • Villalobos VM, Ferreira P, Mora A (1991) The use of biotechnology in the conservation of tropical germplasm. Biotechnol Adv 9:197–215

    Article  CAS  Google Scholar 

  • Wolfe AD (2000) ISSR protocols. http://www.biosci.ohio-state.edu/~awolfe/ISSR/protocols.ISSR.html. Accessed 20 March 2014

  • Zoghlami N, Chrita I, Bouamama B et al (2007) Molecular based assessment of genetic diversity within Barbary fig (Opuntia ficus indica (L.) Mill.) in Tunisia. Sci Hortic 113:134–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Delmar Lopes Alvim for the help during field work.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) (Grant No. PNE0020/2011); and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—SiB-Br (Grand No. 504208/2012–8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SVR, GTS, and ALB; Methodology: SVR, GTS, and ASS; Formal analysis and investigation: GTS, HBB and SVR; Writing—original draft preparation: GTS and SVR; Writing—review and editing: GTS, ASS, HBB, ALB, and SVR; Funding acquisition: SVR and ASS; Resources: SVR and ASS; Supervision: SVR and ASS.

Corresponding author

Correspondence to Sheila Vitória Resende.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Ex-situ conservation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Silva, G., Schnadelbach, A.S., Bezerra, H.B. et al. In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae). Biodivers Conserv 30, 1067–1080 (2021). https://doi.org/10.1007/s10531-021-02132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02132-8

Keywords

Navigation