Skip to main content
Log in

A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation.

Methods

Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as Km and Vmax for NADP+ were determined. The effects of EDTA or metal ions (Mn2+, Mg2+, Co2+, Cu2+, Ca2+, or Zn2+) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively.

Results

The act ivity of MIME2 was significantly increased by Mg2+, Ca2+, or Mn2+ at 0.5 mM but inhibited by Cu2+ or Zn2+ (p < 0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the Km and Vmax for NADP+ are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15 ± 0.24 vs. 2.17 ± 0.31 g/L, p < 0.01).

Conclusions

The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chang G-G, Tong L (2003) Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057

    Article  CAS  Google Scholar 

  • Cui J, He S, Ji X, Lin L, Wei Y, Zhang Q (2016) Identification and characterization of a novel bifunctional Δ(12)/Δ(15)-fatty acid desaturase gene from Rhodosporidium kratochvilovae. Biotechnol Lett 38:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490:1–6

    Article  CAS  PubMed  Google Scholar 

  • Drincovich MF, Iglesias AA, Andreo CS (2010) Interaction of divalent metal ions with the NADP+-malic enzyme from maize leaves. Physiol Plant 81:462–466

    Article  Google Scholar 

  • Frenkel R (1975) Regulation and physiological functions of malic enzymes. Curr Top Cell Regul 9:157–181

    Article  CAS  PubMed  Google Scholar 

  • Fukuda W, Sari Ismail Y, Fukui T, Atomi H, Imanaka T (2005) Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea 1:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassel B (2001) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    Article  CAS  PubMed  Google Scholar 

  • Jernejc K, Legisa M (2002) The influence of metal ions on malic enzyme activity and lipid synthesis in Aspergillus niger. FEMS Microbiol Lett 217:185–190

    Article  CAS  PubMed  Google Scholar 

  • Kuo CW, Hung HC, Tong L, Chang GG (2004) Metal-induced reversible structural interconversion of human mitochondrial NAD (P)+-dependent malic enzyme. Proteins Struct Funct Bioinf 54:404–411

    Article  CAS  Google Scholar 

  • Li Z, Sun H, Mo X, Li X, Xu B (2013) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol 97:4927–4936

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu Y, Koh CM, Sun L, Hlaing MM, Du M, Peng N, Ji L (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97:719–729. https://doi.org/10.1007/s00253-012-4223-9

    Article  CAS  PubMed  Google Scholar 

  • Moreadith R, Lehninger A (1984) The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD (P) + -dependent malic enzyme. J Biol Chem 259:6215–6221

    CAS  PubMed  Google Scholar 

  • Nakajima Munekage Y (2016) Light harvesting and chloroplast electron transport in NADP-malic enzyme type C4 plants. Curr Opin Plant Biol 31:9–15. https://doi.org/10.1016/j.pbi.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  • Ochoa S, Mehler A, Kornberg A (1947) Reversible oxidative decarboxylation of malic acid. J Biol Chem 167:871–872

    CAS  PubMed  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  CAS  PubMed  Google Scholar 

  • Saayman M, Van Zyl W, Viljoen-Bloom M (2006) Cloning, characterisation, and heterologous expression of the Candida utilis malic enzyme gene. Curr Genet 49:248–258

    Article  CAS  PubMed  Google Scholar 

  • Savitha J, Wynn JP, Ratledge C (1997) Malic enzyme: its purification and characterization from Mucor circinelloides and occurrence in other oleaginous fungi. World J Microbiol Biotechnol 13:7–9

    Article  CAS  Google Scholar 

  • Sinsuwongwat S, Kodera A, Kaneko T, Tabata S, Nomura M, Tajima S (2002) Cloning and characterization of a NADP+-malic enzyme gene from Bradyrhizobium japonicum USDA110. Soil Sci Plant Nutr 48:711–717

    Article  CAS  Google Scholar 

  • Song Y, Wynn JP, Li Y, Grantham D, Ratledge C (2001) A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zhang S, Tan H, Zhao ZK (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128

    Article  CAS  PubMed  Google Scholar 

  • Viljoen M, Subden RE, Krizus A, Van Vuuren HJ (1994) Molecular analysis of the malic enzyme gene (mae2) of Schizosaccharomyces pombe. Yeast 10:613–624

    Article  CAS  PubMed  Google Scholar 

  • Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2013) Repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance. Microbiology 159:2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Wang J-x, Tan H-d, Zhao Z-b (2006) Cloning, expression and purification of NAD-linked malic enzyme from E. coli K12. Chin J Bioprocess Eng 1:007

    CAS  Google Scholar 

  • Wynn JP, Bin Abdul Hamid A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(8):1911–1917. https://doi.org/10.1099/13500872-145-8-1911

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2007) Expression, purification, and characterization of NADP+-dependent malic enzyme from the oleaginous fungus Mortierella alpina. Biotechnol Bioprocess Eng 12:265–270

    Article  Google Scholar 

  • Yang J et al (2014) Expression, purification, and characterization of NADP+-dependent malic enzyme from the oleaginous fungus Mortierella alpina. Appl Biochem Biotechnol 173:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bo H (2014) Microbial lipid production from corn stover via Mortierella isabellina. Appl Biochem Biotechnol 174:574

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ratledge C (2008) Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res 112:725–730

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2015) Role of pentose phosphate pathway in lipid accumulation of oleaginous fungus Mucor circinelloides. RSC Adv 5:97658–97664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Project no. 31660454 and no. 31160016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, L., Xiong, X. et al. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation. Biotechnol Lett 40, 1109–1118 (2018). https://doi.org/10.1007/s10529-018-2560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2560-1

Keywords

Navigation