Skip to main content
Log in

Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A Clostridium beijerinckii mutant M13 was derived from C. beijerinckii NCIMB 8052 by atmospheric pressure glow discharge. C. beijerinckii M13 generated a maximum output power density of 79.2 mW m−2 and a maximum output voltage of 230 mV in a microbial fuel cell containing 1 g glucose l−1 as carbon source and 0.15 g methyl viologen l−1 as an electron carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RM, Bennetto HR (1993) Microbial fuel-cell: electricity production from carbohydrates. Appl Biochem Biotech 39:27–40

    Article  Google Scholar 

  • Choi Y, Kim N, Kim S, Jung S (2003) Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bull Korean Chem Soc 24:437–440

    Article  CAS  Google Scholar 

  • Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Biores Technol 102:312–315

    Article  CAS  Google Scholar 

  • Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, Liang DF, Jiang M, Ouyang PK (2011) Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol Lett 33:2379–2383

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Sun BJ, Jiang M, Wu H, Du TF, Tang Y, Wei P, Ouyang PK (2012a) Enhancement of butanol production and reducing power using a two-stage controlled-pH strategy in batch culture of Clostridium acetobutylicum XY16. World J Microbiol Biotechnol 28:2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, Ouyang PK (2012b) Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol 39:401–407

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Malaviya A, Lee SY (2013) Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol Bioeng 110:1646–1653

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen Y, Ying HJ (2013) Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Biores Technol 129:321–328

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial Fuel-Cell-challenges and applications. Environ Sci Technol 40:5172–5180

    Article  CAS  PubMed  Google Scholar 

  • Mathuriya AS, Sharma VN (2009) Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J Biochem Tech 1:49–52

    Google Scholar 

  • Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation: a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958

    Article  CAS  Google Scholar 

  • Peguin S, Soucaille P (1995) Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peguin S, Soucaille P (1996) Modulation of metabolism of Clostridium acetobutylicium grown in chemostat culture in a three-electrode potentiostatic system with methyl viologen as electron carrier. Biotechnol Bioeng 51:342–348

    Article  CAS  PubMed  Google Scholar 

  • Peguin S, Goma G, Delorme P, Soucaille P (1994) Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl Microbiol Biotechnol 42:611–616

    Article  CAS  Google Scholar 

  • Song TS, Wu XY, Zhou CC (2014) Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioproc Biosyst Eng 37:133–138

    Article  CAS  Google Scholar 

  • Sridhar J, Eiteman MA (2001) Metabolic flux analysis of Clostridium thermosuccinogenes effect of pH and culture redox potential. Appl Biochem Biotechnol 94:51–69

    Article  CAS  PubMed  Google Scholar 

  • Sund C, McMasters S, Crittenden S, Harrell L, Sumner J (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568

    Article  CAS  PubMed  Google Scholar 

  • Thorneley RNF (1974) A convenient electrochemical preparation of reduced methyl viologen and a kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus. Biochim Biophys Acta 333:487–496

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Zhu Y, Zhang YP, Li Y (2012) Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicium leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol 93:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xia ML, Zhang LH, Chen HZ (2014) Promotion of the Clostridium acetobutylicum ATCC824 growth and acetone-butanol-ethanol fermentation by flavonoids. World J Microbiol Biotechnol 30:1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Yang YG, Xu MY, Guo J, Sun GP (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Proc Biochem 47:1707–1714

    Article  CAS  Google Scholar 

  • Yuan SJ, He H, Sheng GP, Chen JJ, Tong ZH, Cheng YY, Li WW, Lin ZQ, Zhang F, Yu HQ (2013) A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe. Sci Rep 3:1315

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21306032); the Restructured institutions innovation capacity of special funds of Ministry of Science and Technology of China (Grant No. 2014EG111227); the National High-Tech Research and Development Program of China (863) (Grant No. 2012AA021200); the National Basic Research Program of China (973) (Grant No. 2011CBA00806) and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Postdoctoral Science Foundation of Jiangsu Province (Grant No. 1302107C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Ying.

Additional information

Jun Liu and Ting Guo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Guo, T., Wang, D. et al. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnol Lett 37, 95–100 (2015). https://doi.org/10.1007/s10529-014-1649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1649-4

Keywords

Navigation