Skip to main content
Log in

Grasses as appropriate targets in weed biocontrol: is the common reed, Phragmites australis, an anomaly?

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Despite their importance as invasive species, there has been a hesitation to target grasses in classical biocontrol. This historic bias appears to be changing with multiple active research and release programs. Similarly, biocontrol workers appear to avoid targeting species with native congeners. These biases appear inappropriate as the ecological and entomological literature provide abundant evidence for sub-genus specificity for many herbivores, including those attacking grasses. The biocontrol program targeting Phragmites australis (Cav.) Trin. ex Steud (Poaceae) provides an informative example with endemic subspecies in North America and many sub-genus specific herbivores, including potential European control agents. Grasses and target weeds with congeneric native species require rigorous host range testing, similar to all other targets in current weed biological control programs. Furthermore, it appears prudent to ask petition reviewers and regulatory agencies to abandon their focus on results of no-choice studies and to distinguish between trivial feeding and demographic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: http://www.fauna-eu.org

Similar content being viewed by others

References

  • Able KW, Hagan SM (2000) Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: response of fishes and decapod crustaceans. Estuaries 23:633–646

    Article  Google Scholar 

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Anderson P, Sadek MM, Larsson M, Hansson BS, Thoming G (2013) Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim Behav 85:1169–1175

    Article  Google Scholar 

  • Arnett AE, Louda SM (2002) Re-test of Rhinocyllus conicus host specificity, and the prediction of ecological risk in biological control. Biol Conserv 106:251–257

    Article  Google Scholar 

  • Austel N, Bjorkman C, Hilker M, Meiners T (2014) Phenotypic plasticity in host plant preference of the willow leaf beetle Phratora vulgatissima: the impact of experience made by adults. Agric For Entomol 16:417–425

    Article  Google Scholar 

  • Barrett LG, Heil M (2012) Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci 17:282–292

    Article  PubMed  CAS  Google Scholar 

  • Bean DW, Dalin P, Dudley TL (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 5:511–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit LK, Askins RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194–208

    Article  Google Scholar 

  • Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Nat Acad Sci USA 99:1395–1398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blossey B (2003a) A framework for evaluating potential ecological effects of implementing biological control of Phragmites australis. Estuaries 26:607–617

    Article  Google Scholar 

  • Blossey B (2003b) Morphological differences between native North American Phragmites australis genotypes and introduced invasive European genotypes In: Weinstein MP, Keough JR, Guntenspergen GR, Litvin SY (eds) Phragmites australis: a sheep in wolf’s clothing?, 6–9 January 2002, Vineland, NJ, USA, New Jersey Marine Sciences Consortium, pp 47–56

  • Blossey B (2014) Identification, development, and release of insect biocontrol agents for the management of Phragmites australis. US Army Corps of Engineers, ERDC/EL CR-14-2, Washington DC

  • Blossey B (2016a) The future of biological control: a proposal for fundamental reform. In: van Driesche R, Simberloff D, Blossey B, Causton C, Hoddle M, Marks C, Heinz K, Wagner D, Wagner K (eds) Integrating biological control into conservation practice. Wiley, Chichester, pp 314–328

    Chapter  Google Scholar 

  • Blossey B (2016b) Measuring and evaluating ecological outcomes of biological control introductions. In: van Driesche R, Simberloff D, Blossey B, Causton C, Hoddle M, Marks C, Heinz K, Wagner D, Wagner K (eds) Integrating biological control into conservation practice. Wiley, Chichester, pp 161–188

    Chapter  Google Scholar 

  • Blossey B, Casagrande R (2016) Biological control of invasive Phragmites may safeguard native Phragmites and increase wetland conservation values. Biol Inv 18:2753–2755

    Article  Google Scholar 

  • Blossey B, Casagrande R, Tewksbury L, Landis DA, Wiedenmann RN, Ellis DR (2001) Nontarget feeding of leaf-beetles introduced to control purple loosestrife (Lythrum salicaria L.). Nat Areas J 21:368–377

    Google Scholar 

  • Blossey B, Casagrande RA, Tewksbury L, Hinz H, Häfliger P, Martin L, Cohen J (2013) Identifying, developing and releasing insect biocontrol agents for the management of Phragmites australis. Progress report, ERDC/EL TN-13-3 July 2013, US Army Corps of Engineers, Vicksburg, MS, USA

  • Blossey B, Häfliger P, Tewksbury L, Dávalos A, Casagrande R (2018) Host specificity of Archanara geminipuncta and Archanara neurica, two potential biocontrol agents for invasive Phragmites australis in North America. Biol Control (in review)

  • Bolton RM, Brooks RJ (2010) Impact of the seasonal invasion of Phragmites australis (common reed) on turtle reproductive success. Chelonian Conserv Biol 9:238–243

    Article  Google Scholar 

  • Branson D, Joern A, Sword G (2015) Sustainable management of insect herbivores in grassland ecosystem: a new perspective in grasshopper control. BioScience 56:743–755

    Article  Google Scholar 

  • Brisson J, de Blois S, Lavoie C (2010) Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Sci Manag 3:506–514

    Article  Google Scholar 

  • Brix H, Ye S, Laws EA, Sun D, Li G, Dinga X, Yuana H, Zhaoa G, Wanga J, Peia S (2014) Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecol Eng 73:760–769

    Article  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. BioScience 54:677–688

    Article  Google Scholar 

  • Burdick D, Konisky RA (2003) Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26:407–416

    Article  Google Scholar 

  • Carrasco D, Larsson MC, Anderson P (2015) Insect host plant selection in complex environments. Curr Opin Insect Sci 8:1–7

    Article  Google Scholar 

  • Chambers RM, Mozdzer TJ, Ambrose JC (1998) Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal marsh. Aquat Bot 62:161–169

    Article  CAS  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273

    Article  Google Scholar 

  • Charudattan R (2005) Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35:183–196

    Article  Google Scholar 

  • Clawson B, Duthinh EC (2015) Phragmites, invasions harm riparian property values: part 1. http://msue.anr.msu.edu/news/phragmites_invasions_harm_riparian_property_values_part_1. Accessed 5 March 2017

  • Cohen JS, Maerz JC, Blossey B (2012) Traits, not origin, explain impacts of plants on larval amphibians. Ecol Appl 22:218–228

    Article  PubMed  Google Scholar 

  • Cohen JS, Rainford SKD, Blossey B (2014) Community-weighted mean functional effect traits determine larval amphibian responses to litter mixtures. Oecologia 174:1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Colin R, Eguiarte LE (2016) Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. Am J Bot 103:876–887

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (1989) The successes and failures of weed biocontrol using insects. Biocontrol News Inform 10:213–223

    Google Scholar 

  • Crawley MJ, Gillman M (1989) Population dynamics of cinnabar moth and ragwort in grassland. J Anim Ecol 58:1035–1050

    Article  Google Scholar 

  • Cristofaro M, De Biase A, Smith L (2013) Field release of a prospective biological control agent of weeds, Ceratapion basicorne, to evaluate potential risk to a nontarget crop. Biol Control 64:305–314

    Article  Google Scholar 

  • Crocker E, Nelson EB, Blossey B (2017) Soil conditioning effects of Phragmites australis on native wetland plant seedling survival. Ecol Evol 7:5571–5579

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz R, Manrique V, Hibbard K, Fox A, Roda A, Gandolfo D, Mckay F, Medal J, Hight S, Overholt WA (2014) Successful biological control of tropical soda apple (Solanales: solanaceae) in Florida: a review of key program components. Fla Entomol 97:179–190

    Article  Google Scholar 

  • Djamin A, Pathak MD (1967) Role of silica in resistance to Asiatic rice borer, Chilo suppressalis (Walker) in rice varieties. J Econ Entomol 60:347–351

    Article  CAS  Google Scholar 

  • Dudley TL, Bean DW (2012) Tamarisk biocontrol, endangered species risk and resolution of conflict through riparian restoration. BioControl 57:331–347

    Article  Google Scholar 

  • Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:981–991

    Article  PubMed  CAS  Google Scholar 

  • Fritz RS, Simms E (1992) Plant resistance to herbivores and pathogens. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Nat Acad Sci USA 106:18054–18061

    Article  PubMed  PubMed Central  Google Scholar 

  • Gali-Muhtasib HU, Smith CC, Higgins JJ (1992) The effect of silica in grasses on the feeding behavior of the prairie vole, Microtus ochrogaster. Ecology 73:1724–1729

    Article  Google Scholar 

  • Gaskin JF, Schwarzlander M, Kinter CL, Smith JF, Novak SJ (2013) Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader on three continents. Am J Bot 100:1871–1882

    Article  PubMed  Google Scholar 

  • Goolsby JA, Moran PJ, Racelis AE, Summy KR, Jimenez MM, Lacewell RD, de Leon AP, Kirk AA (2016) Impact of the biological control agent Tetramesa romana (Hymenoptera: Eurytomidae) on Arundo donax (Poaceae: Arundinoideae) along the Rio Grande River in Texas. Biocontrol Sci Technol 26:47–60

    Article  Google Scholar 

  • Grevstad FS, Strong DR, Garcia-Rossi D, Switzer RW, Wecker MS (2003) Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: agent specificity and early results. Biol Control 27:32–42

    Article  Google Scholar 

  • Häfliger P, Schwarzlaender M, Blossey B (2005) Biology of Platycephala planifrons (Diptera: Chloropidae) and its potential effectiveness as biological control agent for invasive Phragmites australis in North America. Biol Control 34:302–311

    Article  Google Scholar 

  • Häfliger P, Schwarzlaender M, Blossey B (2006a) Impact of Archanara geminipuncta (Lepidoptera: Noctuidae) on above-ground biomass production of Phragmites australis. Biol Control 38:413–421

    Article  Google Scholar 

  • Häfliger P, Schwarzländer M, Blossey B (2006b) A comparison of biology and host plant utilization of Archanara geminpuncta, A. dissoluta, A. neurica and Arenostola phragmitidis (Lepidoptera: Noctuidae), potential biological control agents of Phragmites australis (Arundineae: Poaceae). Ann Entomol Soc Am 99:683–696

    Article  Google Scholar 

  • Hakizimana S, Olckers T (2013) Should the flower bud weevil Anthonomus santacruzi (Coleoptera: Curculionidae) be considered for release against the invasive tree Solanum mauritianum (Solanaceae) in New Zealand? Biocontrol Sci Technol 23:197–210

    Article  Google Scholar 

  • Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322

    Article  Google Scholar 

  • Hazelton ELG, Mozdzer TJ, Burdick DM, Kettenring KM, Whigham DF (2014) Phragmites australis management in the United States: 40 years of methods and outcomes. AoB PLANTS. https://doi.org/10.1093/aobpla/plu001

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrichs EA (1986) Perspectives and directions for the continued development of insect-resistant rice varieties. Agric Ecosyst Environ 18:9–36

    Article  Google Scholar 

  • Hinz HL, Schwarzländer M, Gassmann A, Bourchier RS (2014) Successes we may not have had: a retrospective analysis of selected weed biological control agents in the United States. Invasive Plant Sci Manag 7:565–579

    Article  CAS  Google Scholar 

  • Hinz HL, Winston RL, Schwarzländer M (2018) How safe is weed biological control? A global review of direct non-target attack. Biol Inv (submitted)

  • Hudon C, Gagnon P, Jean M (2005) Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence river (Québec, Canada). Ecoscience 12:347–357

    Article  Google Scholar 

  • Jahner JP, Bonilla MM, Badik KJ, Shapiro AM, Forister ML (2011) Use of exotic hosts by Lepidoptera: widespread species colonize more novel hosts. Evolution 65:2719–2724

    Article  PubMed  Google Scholar 

  • Jodoin Y, Lavoie C, Villeneuve P, Theriault M, Beaulieu J, Belzile F (2008) Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J Appl Ecol 45:459–466

    Article  Google Scholar 

  • Karley AJ, Mitchell C, Brookes C, McNicol J, O’Neill T, Roberts H, Graham J, Johnson SN (2016) Exploiting physical defence traits for crop protection: leaf trichomes of Rubus idaeus have deterrent effects on spider mites but not aphids. Ann Appl Biol 168:159–172

    Article  Google Scholar 

  • Kennedy E, Leff LG, de Szalay FA (2012) Herbiciding Phragmites australis: effects on litter decomposition, microbial biomass, and macroinvertebrate communities. Fundam Appl Limnol 180:309–319

    Article  CAS  Google Scholar 

  • Kettenring KM, Blois SD, Hauber DP (2012) Moving from a regional to a continental perspective of Phragmites australis invasion in North America. AoB PLANTS. https://doi.org/10.1093/aobpla/pls040

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulmatiski A, Beard KH, Meyerson LA, Gibson JR, Mock KE (2010) Nonnative Phragmites autralis invasion into Utah wetlands. West N Am Nat 70:541–552

    Article  Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MHG, Olesen B, Riis T, Sorrell BK, Brix H (2012) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99:538–551

    Article  PubMed  CAS  Google Scholar 

  • Lampert A, Hastings A, Grosholz ED, Jardine SL, Sanchirico JN (2014) Optimal approaches for balancing invasive species eradication and endangered species management. Science 344:1028–1031

    Article  PubMed  CAS  Google Scholar 

  • Larochelle M, Dumont P, Lavoie C, Hatin D (2015) Varying effects of common reed invasion on early life history of Northern pike. Trans Am Fish Soc 144:196–210

    Article  Google Scholar 

  • Liu SS, Li YH, Liu YQ, Zalucki MP (2005) Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore. Ecol Lett 8:722–729

    Article  Google Scholar 

  • Lombard KB, Tomassi D, Ebersole J (2012) Long-term management of an invasive plant: lessons from seven years of Phragmites australis control. North East Nat 19:181–193

    Article  Google Scholar 

  • Lou YG, Zhang GR, Zhang WQ, Hu Y, Zhang J (2013) Biological control of rice insect pests in China. Biol Control 67:8–20

    Article  Google Scholar 

  • Marks M, Lapin B, Randall JA (1994) Phragmites australis (P. communis): threats, management and monitoring. Nat Areas J 14:285–294

    Google Scholar 

  • Marohasy J (1996) Host shifts in biological weed control: real problems, semantic difficulties or poor science? Int J Pest Manage 42:71–75

    Article  Google Scholar 

  • Martin LJ, Blossey B (2013a) Intraspecific variation overrides origin effects in impacts of litter-derived secondary compounds on larval amphibians. Oecologia 173:449–459

    Article  PubMed  Google Scholar 

  • Martin LJ, Blossey B (2013b) The runaway weed: costs and failures of Phragmites australis management in the USA. Estuaries Coasts 36:626–632

    Article  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677–683

    Article  PubMed  Google Scholar 

  • McGuire R, Johnson MT (2006) Plant genotype and induced responses affect resistance to herbivores on evening primrose (Oenothera biennis). Ecol Entomol 31:20–31

    Article  Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2008) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Inv 12:103–111

    Article  Google Scholar 

  • Michel R, Tscharntke T (1993) Ursachen der populationsdichteschwankungen von schmetterlingen im ökosystem schilf (Phragmites australis Trin.). Mitt Dtsch Ges Allg Angew Entomol 8:511–515

    Google Scholar 

  • Moore B, Andrew RL, Kulheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Myers JH, Sarfraz RM (2017) Impacts of insect herbivores on plant populations. Annu Rev Entomol 62:207–230

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2004) Endangered and threatened species of the Platte River. National Academies, Washington

    Google Scholar 

  • Nestory S (2016) Biological and mechanical control of Japanese stiltgrass (Microstegium vimineum). M.S. Thesis. University of Delaware, Newark, DE, USA

  • Olckers T (2000) Biology, host specificity and risk assessment of Gargaphia decoris, the first agent to be released in South Africa for the biological control of the invasive tree Solanum mauritianum. BioControl 45:373–388

    Article  Google Scholar 

  • Olckers T (2011) Biological control of Solanum mauritianum Scop. (Solanaceae) in South Africa: will perseverance pay off? Afr Entomol 19:416–426

    Article  Google Scholar 

  • Olckers T, Hulley PE (1994) Resolving ambiguous results of host-specificity tests—the case of two Leptinotarsa species (Coleoptera, Chrysomelidae) for biological control of Solanum elaeagnifolium Cavanilles (Solanaceae) in South Africa. Afr Entomol 2:137–144

    Google Scholar 

  • Overholt WA, Hidayat P, Le Ru B, Takasu K, Goolsby JA, Racelis A, Burrell AM, Amalin D, Agum W, Njaku M, Pallangyo B, Klein PE, Cuda JP (2016) Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA. Fla Entomol 99:734–739

    Article  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. University Press of Kansas, Manhattan

    Google Scholar 

  • Parsons KC (2003) Reproductive success of wading birds using Phragmites marsh and upland nesting habitats. Estuaries 26:596–601

    Article  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Nat Acad Sci USA 106:18097–18102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearse IS, Harris DJ, Karban R, Sih A (2013) Predicting novel herbivore-plant interactions. Oikos 122:1554–1564

    Article  Google Scholar 

  • Pemberton RW (1996) The potential of biological control for the suppression of invasive weeds of southern environments. Castanea 61:313–391

    Google Scholar 

  • Pemberton RW (2000) Predictable risk to native plants in weed biocontrol. Oecologia 125:489–494

    Article  PubMed  Google Scholar 

  • Profitt M, Khalla MA, Carrasco D, Larsson MC, Anderson P (2015) ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecol Lett 18:365–374

    Article  Google Scholar 

  • Quirion B, Simek Z, Dávalos A, Blossey B (2018) Management of invasive Phragmites australis in the Adirondacks: a cautionary tale about prospects of eradication. Biol Inv 20:59–73

    Article  Google Scholar 

  • Racelis AE, Goolsby JA, Moran P (2009) Seasonality and movement of adventive populations of the Arundo wasp (Hymenoptera: Eurytomidae), a biological control agent of giant reed in the Lower Rio Grande Basin in South Texas. Southwest Entomol 34:347–357

    Article  Google Scholar 

  • Rogalski MA, Skelly DK (2012) Positive effects of nonnative invasive Phragmites australis on larval bullfrogs. PLoS ONE 7(8):e44420. https://doi.org/10.1371/journal.pone.0044420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossiter NA, Setterfield SA, Douglas MM, Hutley LB (2003) Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers Distrib 9:169–176

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci USA 99:2445–2449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saltonstall K (2016) The naming of Phragmites haplotypes. Biol Inv 18:2433–2441

    Article  Google Scholar 

  • Saltonstall K, Meyerson LA (2016) Phragmites australis: from genes to ecosystems. Biol Inv 18:2415–2420

    Article  Google Scholar 

  • Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA 21:683–692

    Google Scholar 

  • Saltonstall K, Castillo HE, Blossey B (2014) Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. Am J Bot 101:211–215

    Article  PubMed  Google Scholar 

  • Saltonstall K, Lambert AM, Rice N (2016) What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas Wash. Biol Inv 18:2463–2474

    Article  Google Scholar 

  • Sciance MB, Patrick CJ, Weller DE, Williams MN, McCormick MK, Hazelton ELG (2016) Local and regional disturbances associated with the invasion of Chesapeake Bay marshes by the common reed Phragmites australis. Biol Inv 18:2661–2677

    Article  Google Scholar 

  • Secord D, Kareiva P (1996) Perils and pitfalls in the host specificity paradigm. BioScience 46:448–453

    Article  Google Scholar 

  • Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih Sartanto (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988

    Article  Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6:5973–5986

    Article  PubMed  PubMed Central  Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18:1424–1434

    Article  Google Scholar 

  • Smith L (2012) Host plant oviposition preference of Ceratapion basicorne (Coleoptera: Apionidae), a potential biological control agent of yellow starthistle. Biocontrol Sci Technol 22:407–418

    Article  Google Scholar 

  • Strong DR, McCoy ED, Rey JR (1977) Time and number of herbivore species—pests of sugarcane. Ecology 58:167–175

    Article  Google Scholar 

  • Suckling DM, Sforza RFH (2014) What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9(1):e84847. https://doi.org/10.1371/journal.pone.0084847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tewksbury L, Casagrande R, Blossey B, Häfliger P, Schwarzländer M (2002) Potential for biological control of Phragmites australis in North America. Biol Control 23:191–212

    Article  Google Scholar 

  • Tscharntke T (1989) Attack by a stem-boring moth increases susceptibility of Phragmites australis to gallmaking by a midge: mechanisms and effects on midge population dynamics. Oikos 55:93–100

    Article  Google Scholar 

  • Tscharntke T (1990) Fluctuations in abundance of a stem-boring moth damaging shoots of Phragmites australis: causes and effects of overexploitation of food in a late-successional grass monoculture. J Appl Ecol 27:679–692

    Article  Google Scholar 

  • Tscharntke T (1992a) Cascade effects among four trophic levels: bird predation on galls affects density-dependent parasitism. Ecology 73:1689–1698

    Article  Google Scholar 

  • Tscharntke T (1992b) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conserv Biol 6:530–536

    Article  Google Scholar 

  • Tscharntke T (1999) Insects on common reed (Phragmites australis): community structure and the impact of herbivory on shoot growth. Aquat Bot 64:339–410

    Article  Google Scholar 

  • USDA (2016) Technical advisory group for biological control agents of weeds manual, Interim edn. United States Department of Agriculture, Washington

    Google Scholar 

  • USDA NRCS (2017) The plants database (http://plants.usda.gov/). National Plant Data Team, Greensboro, NC, USA

  • van Klinken RD, Edwards OR (2002) Is host specificity of weed biocontrol agents likely to evolve rapidly following establishment? Ecol Lett 5:590–595

    Article  Google Scholar 

  • Vasquez EA, Glenn EP, Brown JJ, Guntenspergen GR, Nelson SG (2005) Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar Ecol Prog Ser 298:1–8

    Article  Google Scholar 

  • Vogel JA, Koford RR, Debinski DM (2010) Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. J Insect Conserv 14:663–677

    Article  Google Scholar 

  • Ward DB (2010) North America has two species of Phragmites (Gramineae). Castanea 75:394–401

    Article  Google Scholar 

  • Whitham TG, Gehring AA, Lamit LJ, Wojtowicz T, Evans LM, Keith AR, Smith DS (2012) Community specificity: life and afterlife effects of genes. Trends Plant Sci 17:271–281

    Article  PubMed  CAS  Google Scholar 

  • Whyte RS, Bocetti CI, Klarer DM (2015) Bird assemblages in Phragmites dominated and non-Phragmites habitats in two Lake Erie coastal marshes. Nat Areas J 35:235–245

    Article  Google Scholar 

  • Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV, USA. FHTET-2014-04

  • Witt ABR, McConnachie AJ (2003) The potential for classical biological control of invasive grass species with special reference to invasive Sporobolus spp. (Poaceae) in Australia In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, Canberra, Australia, 27 April–2 May, CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, pp 198–202

  • Zheng H, Wu Y, Ding J, Binion D, Fu W, Reardon R (2004) Invasive plants of Asian origin established in the United States and their natural enemies, vol 1. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV, FHTET-2004-05

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate support and assistance we have received over the past 20 years from wetland and wildlife managers in the USA and Canada and technical support from many undergraduate students. Major funding for this work was provided by the US Fish and Wildlife Service, Army Corps of Engineers, New York State Department of Transportation, Rhode Island and New York Sea Grant programs, and Agricultural Experiment Stations of Cornell and University of Rhode Island. Patrick Häfliger and Hariet Hinz were supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/). We thank Rachel Winston for background info on biocontrol and Wade Simmons for help in preparing the figures. We appreciate helpful comments by reviewers and editors that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Blossey.

Additional information

Handling Editors: Mark Schwarzländer, Cliff Moran and S. Raghu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, R.A., Häfliger, P., Hinz, H.L. et al. Grasses as appropriate targets in weed biocontrol: is the common reed, Phragmites australis, an anomaly?. BioControl 63, 391–403 (2018). https://doi.org/10.1007/s10526-018-9871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-018-9871-y

Keywords

Navigation