Skip to main content
Log in

Intraspecific variation overrides origin effects in impacts of litter-derived secondary compounds on larval amphibians

  • Plant–animal Interactions - Original Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Secondary compounds leached from plant litter can negatively affect aquatic amphibian larvae. Non-native plants and their potentially distinct secondary compounds may constitute cryptic threats to native amphibians. We used the availability of both native and introduced Phragmites australis (common reed) populations in North America to assess the importance of origin, intraspecific variation, and two purified classes of compounds (tannins and saponins; gradients 0–25 mg  L−1) on two common and widespread amphibians (Ambystoma maculatum, spotted salamander, and Lithobates palustris, pickerel frog). In experiments with purified compounds, high tannin concentrations reduced A. maculatum survival and developmental rate while high saponin concentrations reduced survival, developmental rate, and size of L. palustris and reduced A. maculatum developmental rate. In experiments using leaf litter extracts of 14 different P. australis populations, A. maculatum larval survival varied among populations but plant origin (native or introduced) did not explain this variation. In contrast to the lack of effects of purified saponins, increases in saponin concentrations in P. australis leachates significantly decreased A. maculatum survival. Our results suggest: (1) secondary compounds can impact larval amphibian survival and development in species-specific ways; (2) impacts of P. australis on A. maculatum vary among P. australis populations, reflecting intraspecific variation in secondary chemistry; and (3) origin (whether the plant is native or introduced) is a poor predictor of P. australis effects on A. maculatum. Scientists and managers may need to move beyond considering origin as a predictive variable when managing plant communities to benefit amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams CK, Saenz D (2012) Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the southern leopard frog (Lithobates sphenocephalus).Can J Zool 90:991–998. doi:10.1139/z2012-067

    Article  CAS  Google Scholar 

  • Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715

    Article  Google Scholar 

  • Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338:113–116. doi:10.1126/science.1225977

    Article  PubMed  CAS  Google Scholar 

  • Allison P (1995) Survival analysis using the SAS system. SAS Institute, Cary

    Google Scholar 

  • Babbitt K, Jordan F (1996) Predation on Bufo terrestris tadpoles: effects of cover and predator identity. Copeia 2:485–488

    Article  Google Scholar 

  • Bailey JK et al (2009) From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Philos Trans R Soc Lond B 364:1607–1616.doi:10.1098/rstb.2008.0336

    Article  Google Scholar 

  • Brown CJ, Blossey B, Maerz JC, Joule SJ (2006) Invasive plant and experimental venue affect tadpole performance. Biol Inv 8:327–338

    Article  Google Scholar 

  • Burggren WW, Infantino RL (1994) The respiratory transition from water to air-breathing during amphibian metamorphosis. Am Zool 34:238–246

    Google Scholar 

  • Chalcraft DR, Binckley CA, Resetarits WJ Jr (2005) Experimental venue and estimation of interaction strength: comment. Ecology 86:1061–1067

    Article  Google Scholar 

  • Chen JC, Chen KW, Chen JM (1996) Effects of saponin on survival, growth, molting and feeding of Penaeus japonicus juveniles. Aquaculture 144:165–175. doi:10.1016/s0044-8486(96)01301-4

    Article  CAS  Google Scholar 

  • Cohen JS, Maerz JC, Blossey B (2012) Traits, not origin, explain impacts of plants on larval amphibians. Ecol Appl 22:218–228

    Article  PubMed  Google Scholar 

  • Cotten TB, Kwiatkowski MA, Saenz D, Collyer M (2012) Effects of an invasive plant, Chinese Tallow (Triadica sebifera), on development and survival of anuran larvae. J Herpetol 46:186–193. doi:10.1670/10-311

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life tables. J R Stat Soc 34:187–220

    Google Scholar 

  • Davidson EW, Larsen A, Palmer CM (2012) Potential influence of plant chemicals on infectivity of Batrachochytrium dendrobatidis. Dis Aquat Org 101:87–93. doi:10.3354/dao02505

    Article  PubMed  Google Scholar 

  • Donavan L (1980) Morphological features of the stages in the development of Ambystoma talpoideum (Holbrook) from the fertilized egg to the adult. PhD thesis, University of Southern Mississippi

  • Drake JM, Kramer AM (2012) Mechanistic analogy: how microcosms explain nature. Theor Ecol 5:433–444. doi:10.1007/s12080-011-0134-0

    Article  Google Scholar 

  • Earl JE, Semlitsch RD (2012) Reciprocal subsidies in ponds: does leaf input increase frog biomass export? Oecologia 170:1077–1087. doi:10.1007/s00442-012-2361-5

    Article  PubMed  Google Scholar 

  • Earl JE, Cohagen KE, Semlitsch RD (2012) Effects of leachate from tree leaves and grass litter on tadpoles. Environ Tox Chem 31:1511–1517. doi:10.1002/etc.1829

    Article  CAS  Google Scholar 

  • Freda J, Dunson WA (1986) Effects of low pH and other chemical variables on the local distribution of amphibians. Copeia. 454–466

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Halverson MA, Skelly DK, Kiesecker JM, Freidenburg LK (2003) Forest mediated light regime linked to amphibian distribution and performance. Oecologia 134:360–364

    PubMed  CAS  Google Scholar 

  • Hansen DL, Lambertini C, Jampeetong A, Brix H (2007) Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquat Bot 86:269–279

    Article  Google Scholar 

  • Haviola S et al (2012) Genetic and environmental factors behind foliar chemistry of the mature mountain birch. J Chem Ecol 38:902–913. doi:10.1007/s10886-012-0148-0

    Article  PubMed  CAS  Google Scholar 

  • Herlt AJ, Mander LN, Pongoh E, Rumampuk RJ, Tarigan P (2002) Two major saponins from seeds of Barringtonia asiatica: putative antifeedants toward Epilachna sp larvae. J Natural Products 65:115–120. doi:10.1021/np000600b

    Article  CAS  Google Scholar 

  • Hostettmann K, Marston A (1995) Saponins. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Hulse A, McCoy C, Censky E (2001) Amphibians and reptiles of Pennsylvania and the Northeast. Conell University Press, Ithaca

    Google Scholar 

  • Ishaaya I, Birk Y, Bondi A, Tencer Y (1969) Soyabean saponins. 9. Studies of their effects on birds, mammals and cold blooded organisms. J Sci Food Agric 20:433–436. doi:10.1002/jsfa.2740200716

    Article  PubMed  CAS  Google Scholar 

  • Kattge J et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935. doi:10.1111/j.1365-2486.2011.02451.x

    Article  Google Scholar 

  • Kerby JL, Richards-Hrdlicka KL, Storfer A, Skelly DK (2010) An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries? Ecol Lett 13:60–67. doi:10.1111/j.1461-0248.2009.01399.x

    Article  PubMed  Google Scholar 

  • Kopp K, Wachlevski M, Eterovick PC (2006) Environmental complexity reduces tadpole predation by water bugs. Can J Zool 84:136–140. doi:10.1139/z05-186

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystem—a review. Plant Soil 256:41–66. doi:10.1023/a:1026206511084

    Article  CAS  Google Scholar 

  • Leishman MR, Thomson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42. doi:10.1111/j.1365-2745.2009.01608.x

    Article  CAS  Google Scholar 

  • LeRoy CJ, Whitham TG, Keim P, Marks JC (2006) Plant genes link forests and streams. Ecology 87:255–261. doi:10.1890/05-0159

    Article  PubMed  Google Scholar 

  • Maerz JC, Brown CJ, Chapin CT, Blossey B (2005) Can secondary compounds of an invasive plant affect larval amphibians? Funct Ecol 19:970–975

    Article  Google Scholar 

  • Maerz JC, Cohen JS, Blossey B (2010) Does detritus quality predict the effect of native and non-native plants on the performance of larval amphibians? Freshw Biol 55:1694–1704. doi:10.1111/j.1365-2427.2010.02404.x

    Google Scholar 

  • Martin LJ, Murray BR (2011) A predictive framework and review of the ecological impacts of exotic plant invasions on reptiles and amphibians. Biol Rev 86:407–419. doi:10.1111/j.1469-185X.2010.00152.x

    Article  PubMed  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Nat AcadSciUSA 105:19780–19785. doi:10.1073/pnas.0805600105

    Article  PubMed  CAS  Google Scholar 

  • Melvin SD, Houlahan JE (2012) Tadpole mortality varies across experimental venues: do laboratory populations predict responses in nature? Oecologia 169:861–868. doi:10.1007/s00442-012-2260-9

    Article  PubMed  Google Scholar 

  • Morrongiello JR, Bond NR, Crook DA, Wong BBM (2011) Eucalyptus leachate inhibits reproduction in a freshwater fish. Freshw Biol 56:1736–1745. doi:10.1111/j.1365-2427.2011.02605.x

    Article  Google Scholar 

  • Müller MS, McWilliams SR, Podlesak D, Donaldson JR, Bothwell HM, Lindroth RL (2006) Tri-trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry. Oikos 114:507–517

    Article  Google Scholar 

  • Njau KN, Renalda M (2010) Performance of horizontal subsurface flow constructed wetland in the removal of tannins. Can J Civil Eng 37:496–501. doi:10.1139/l09-161

    Article  CAS  Google Scholar 

  • Park MG, Blossey B (2008) Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am J Bot 95:1557–1568

    Article  PubMed  Google Scholar 

  • Rautio P, Bergvall UA, Karonen M, Salminen JP (2007) Bitter problems in ecological feeding experiments: Commercial tannin preparations and common methods for tannin quantifications. Biochem Syst Ecol 35:257–262. doi:10.1016/j.bse.2006.10.016

    Article  CAS  Google Scholar 

  • Rey D, Pautou MP, Meyran JC (1999) Histopathological effects of tannic acid on the midgut epithelium of some aquatic Diptera larvae. J Invertebr Pathol 73:173–181. doi:10.1006/jipa.1998.4810

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse TAG (2011) Anuran larval habitat quality when reed canary grass is present in wetlands. J Herpetol 45:491–496

    Article  Google Scholar 

  • Rogalski MA, Skelly DK (2012) Positive effects of non-native invasive Phragmites australis on larval bullfrogs. PLoS One 7:e44420. doi:10.1371/journal.pone.0044420

    Article  PubMed  CAS  Google Scholar 

  • Rubbo MJ, Kiesecker JM (2004) Leaf litter composition and community structure: translating regional species changes into local dynamics. Ecology 85:2519–2525. doi:10.1890/03-0653

    Article  Google Scholar 

  • Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338. doi:10.1111/j.1365-2435.2010.01826.x

    Article  Google Scholar 

  • Salminen JP, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P (2004) Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J Chem Ecol 30:1693–1711. doi:10.1023/B:JOEC.0000042396.40756.b7

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by non-native genotypes of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci USA 99:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA 21:683–692

    Google Scholar 

  • Schiesari L (2006) Pond canopy cover: a resource gradient for anuran larvae. Freshw Biol 51:412–423. doi:10.1111/j.1365-2427.2005.01497.x

    Article  CAS  Google Scholar 

  • Skelly DK (2002) Experimental venue and estimation of interaction strength. Ecology 83:2097–2101

    Article  Google Scholar 

  • Skelly DK, Werner EE, Cortwright SA (1999) Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–2337. doi:10.1890/0012-9658(1999)[2326:ltddoa]2.0.co;2

    Article  Google Scholar 

  • Skelly DK, Freidenburg LK, Kiesecker JM (2002) Forest canopy and the performance of larval amphibians. Ecology 83:983–992

    Article  Google Scholar 

  • Smith DS, Bailey JK, Shuster SM, Whitham TG (2011) A geographic mosaic of trophic interactions and selection: trees, aphids and birds. J Evol Biol 24:422–429. doi:10.1111/j.1420-9101.2010.02178.x

    Article  PubMed  CAS  Google Scholar 

  • Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243. doi:10.1016/j.jep.2004.05.016

    Article  PubMed  CAS  Google Scholar 

  • Stoler AB, Relyea RA (2011) Living in the litter: the influence of tree leaf litter on wetland communities. Oikos 120:862–872. doi:10.1111/j.1600-0706.2010.18625.x

    Article  Google Scholar 

  • Stuart SN et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Temmink JHM, Field JA, Vanhaastrecht JC, Merkelbach RCM (1989) Acute and sub-acute toxicity of bark tannins in carp (Cyprinus carpio L). Water Res 23:341–344. doi:10.1016/0043-1354(89)90100-0

    Article  CAS  Google Scholar 

  • Ultsch GR, Bradford DF, Freda J (1999) Physiology: coping with the environment. In: McDiamid R, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 189–214

    Google Scholar 

  • Violle C et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi:10.1016/j.tree.2011.11.014

    Article  PubMed  Google Scholar 

  • Watling JI, Hickman CR, Lee E, Wang K, Orrock JL (2011a) Extracts of the invasive shrub Lonicera maackii increase mortality and alter behavior of amphibian larvae. Oecologia 165:153–159. doi:10.1007/s00442-010-1777-z

    Article  PubMed  CAS  Google Scholar 

  • Watling JI, Hickman CR, Orrock JL (2011b) Invasive shrub alters native forest amphibian communities. Biol Conserv 144:2597–2601. doi:10.1016/j.biocon.2011.07.005

    Article  Google Scholar 

  • Watling JI, Hickman CR, Orrock JL (2011c) Predators and invasive plants affect performance of amphibian larvae. Oikos 120:735–739. doi:10.1111/j.1600-0706.2010.19255.x

    Article  Google Scholar 

  • Wegner C, Hamburger M (2002) Occurrence of stable foam in the upper Rhine River caused by plant-derived surfactants. Environ Sci Technol 36:3250–3256. doi:10.1021/es025532p

    Article  PubMed  CAS  Google Scholar 

  • Williams BK, Rittenhouse TAG, Semlitsch RD (2008) Leaf litter input mediates tadpole performance across forest canopy treatments. Oecologia 155:377–384. doi:10.1007/s00442-007-0920-y

    Article  PubMed  Google Scholar 

  • Yarnes CT, Boecklen WJ, Tuominen K, Salminen JP (2006) Defining phytochemical phenotypes: size and shape analysis of phenolic compounds in oaks (Fagaceae, Quercus) of the Chihuahuan Desert. Can J Bot 84:1233–1248. doi:10.1139/b06-076

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Laurila, C. Hickmann and two anonymous reviewers for their suggestions and V. Nuzzo, C. Kraft, A. Davalos, J. Maerz, J. Cohen, and E. Feldman for critical feedback. We thank F. Vermeylen for statistical advice, many land managers for collecting litter, and B. Whitmore, S. Biddlecomb, S. Rainford, C. Thurston, I. Conti-Jerpe, W. Simmons, W. Dietrich and J. Dietrich for technical assistance. L.J.M. is supported by the NSF GRFP; additional funding was provided by the NY Department of Transportation. This project was approved by Cornell University’s Institutional Animal Care and Use Committee (Protocol 00-26-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Martin.

Additional information

Communicated by Anssi Laurila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.J., Blossey, B. Intraspecific variation overrides origin effects in impacts of litter-derived secondary compounds on larval amphibians. Oecologia 173, 449–459 (2013). https://doi.org/10.1007/s00442-013-2624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2624-9

Keywords

Navigation