Skip to main content
Log in

Effect of Non-Thermal Plasma on Proliferative Activity and Adhesion of Multipotent Stromal Cells to Scaffolds Developed for Tissue-Engineered Constructs

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of non-thermal argon plasma on proliferative activity of bone marrow multipotent stromal cells in vitro. Treatment of stromal cell suspension with pure argon did not affect their proliferation. The cells treated with non-thermal argon plasma and explanted in the treatment medium demonstrated growth inhibition by 30-40% in comparison with the control. Multipotent stromal cells treated with plasma and after centrifugation explanted in normal medium within 12 min demonstrated accelerated growth. The total cell growth from the pellet and supernatant significantly exceeded the control values. We also analyzed adhesion and proliferative activity of multipotent stromal cells treated with non-thermal plasma on bioresorbable carriers. The cells adhered and proliferated on all types of studied samples. Adhesion properties of scaffolds differed. Caprolactone was found to be the most suitable material for adhesion and proliferation of multipotent stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreeva ER, Pogodina MV, Buravkova LB. Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. Human Physiol. 2015;41(2):218-222.

    Article  CAS  Google Scholar 

  2. Bardakova KN, Grebenik EA, Istranova EV, Istranov LP, Gerasimov YV, Grosheva AG, Zharikova TM, Minaev NV, Shavkuta BS, Dudova DS, Kostyuk SV, Vorob’eva NN, Bagratashvili VN, Timashev PS, Chailakhyan RK. Reinforced Hybrid Collagen Sponges for Tissue Engineering. Bull. Exp. Biol. Med. 2018;165(1):142-147.

    Article  CAS  PubMed  Google Scholar 

  3. Bochkov NP, Nikitina VA. Cytogenetics of human stem cells. Mol. Med. 2008;(3):40-47. Russian.

  4. Tambiev AH. Impact of Millimeter Waves on Photosynthetic Organisms Including Photobiotechnological Produsers. Biomed. Tekhnol. Radioelektron. 2007;(2-4):140-156. Russian.

  5. Tambiev AKh, Kirikova NN, Betskii OV, Gulyaev YuV. Millimeter wave and photosynthetic organisms. Moscow, 2003. Russian.

  6. Tuhvatulin AI, Sysolyatina EV, Scheblyakov DV, Logunov DYu, Vasiliev MM, Yurova MA, Danilova MA, Petrov OF, Naroditsky BS, Morfill GE, Grigoriev AI, Fortov VE, Gintsburg AL, Ermolaeva SA. Non-thermal plasma causes p53-dependent apoptosis in human colon carcinoma cells. Acta Naturae. 2012;4(3):82-87.

  7. Chailakhyan RK, Gerasimov YuV. Bone marrow stromal stem cells: Experimental studies and clinical applications. Med. Immunol. 2004;6(3-5):201-205.

    Google Scholar 

  8. Chailakhyan RK, Gerasimov YuV, Kuralesova AI, Latsinik NV, Genkina EN, Chailakhyan MR. Proliferative and differentiation potential of individual clones derived from bone marrow stromal precursor cells. Biol. Bull. 2001;28(6):575-584.

    Article  Google Scholar 

  9. Chailahyan RK, Gerasimov JuV, Sviridov AP, Kondjurin AV, Tambiev AH, Bagratishvili VN. Effect of IR Laser Radiation on the Multipotent Mesenchymal Stromal Stem Cells of Rat Marrow In Vivo. Ross. Immunol. Zh. 2009;3(3-4):333-337. Russian.

    Google Scholar 

  10. Chailakhyan RK, Shekhter AB, Tel’pukhov VI, Ivannikov SV, Gerasimov YuV, Vorobieva NN, Moskvina IL, Bagratashvili VN. Repair of Partial Thickness Articular Hyaline Cartilage Injuries with Multipotent Mesenchymal Stromal Bone Marrow Cells Transplantation in Rabbits. Vestn. Travmatol. Ortoped. 2015;(1):23-27. Russian.

  11. Chailakhyan RK, Yusupov VI, Gerasimov YuV, Sobolev PA, Tambiev AKh, Vorob’eva NN, Sviridov AP, Bagratishvili VN. Influence of hydrodynamic processes and low-intensity radiation with wavelengths of 0.63 μ and 7.1 mm on proliferative activity of bone marrow stromal stem cells in vitro. Biomeditdina. 2011;(2):24-29. Russian.

  12. Chailakhyan RK, Gerasimov YuV, Yusupov VI, Sviridov AP, Tambiev AKh, Vorobieva NN, Grosheva AG, Kuralesova AI, Moskvina IL, Bagratashvili VN. Activation of Bone Marrow Multipotent Stromal Cells by Laser and EHF Radiation and Their Combined Impacts. Sovremen. Tekhnol. Med. 2017;9(1):28-37.

    Article  Google Scholar 

  13. Chaĭlakhan RK, Lalykina KS. Spontaneous and induced differentiation of osseous tissue in a population of fibroblast-like cells obtained from long-term monolayer cultures of bone marrow and spleen. Dokl. Akad. Nauk SSSR. 1969;187(2):473-475. Russian.

    PubMed  Google Scholar 

  14. Chudnovskyi V, Bulanov V, Jusypov V. Laser Induction of Acoustic Hydrodynamical Effects in Medicine. Fotonika. 2010;(1):30-36. Russian.

  15. Chudnovskii VM, Leonova GN, Skopinov SA, Drozdov AL, Yusupov VI. Biological models and physical mechanisms of laser therapy. Vladivostok, 2002. Russian.

  16. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiology. 2004;94(1):92-95.

    Article  Google Scholar 

  17. Choi JS, Kim J, Hong YJ, Bae WY, Choi EH, Jeong JW, Park HK. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express. 2017;8(5):2649-2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durant TJ, Dyment N, McCarthy MB, Cote MP, Arciero RA, Mazzocca AD, Rowe D. Mesenchymal stem cell response to growth factor treatment and low oxygen tension in 3-dimensional construct environment. Muscles Ligaments Tendons J. 2014;4(1):46-51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M. Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg. Med. 2008;40(6):433-438.

    Article  PubMed  Google Scholar 

  20. Ermolaeva S, Petrov O, Naroditsky B, Morfill G, Fortov V, Gintsburg A. Cold Plasma Therapy. Comprehensive Biomedical Physics.Vol. 10: Physical Medicine and Rehabilitation. Chapter 10.18. Brahme A, ed. Oxford, 2014. P. 343-367.

  21. Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng. Part A. 2011;17(9-10):1201-1208.

    Article  CAS  PubMed  Google Scholar 

  22. Lee WY, Lui PP, Rui YF. Hypoxia-mediated efficient expansion of human tendon-de rived stem cells in vitro. Tissue Eng. Part A. 2012;18(5-6):484-498.

    Article  CAS  PubMed  Google Scholar 

  23. Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases.. World J. Stem Cells. 2014;6(2):111-119.

  24. Park J, Lee H, Lee HJ, Kim GC, Kim DY, Han S, Song K. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci. Rep. 2016;6. ID 39298. doi: 10.1038/srep39298.

  25. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in cultur. Lasers Surg. Med. 2007;39(4):373-378.

    Article  PubMed  Google Scholar 

  26. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199-206.

    Article  CAS  PubMed  Google Scholar 

  27. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31(6):1299-1306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Chailakhyan.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 69-76, January, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chailakhyan, R.K., Grosheva, A.G., Gerasimov, Y.V. et al. Effect of Non-Thermal Plasma on Proliferative Activity and Adhesion of Multipotent Stromal Cells to Scaffolds Developed for Tissue-Engineered Constructs. Bull Exp Biol Med 167, 182–188 (2019). https://doi.org/10.1007/s10517-019-04486-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04486-0

Key Words

Navigation