Skip to main content
Log in

Stress of the Endoplasmic Reticulum of Neurons in Stroke Can Be Maximally Limited by Combined Exposure to Hypercapnia and Hypoxia

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the expression of chaperone GRP-78 and transcription factor NF-kB during the development of ischemic tolerance of the brain after combined and isolated exposure to hypoxia and hypercapnia. Combined exposure to hypoxia and hypercapnia maximally increased the expression of chaperone GRP-78 and transcription factor NF-kB, while the formation of ischemia-induced tolerance under conditions of hypercapnic hypoxia can be associated with activation of adaptive stress mechanisms in the endoplasmic reticulum. Under these conditions, hypercapnia in combination with hypoxia is a priority factor for activation of GRP-78 and transcription factor NF-kB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bespalov AG, Tregub PP, Kulikov VP, Pijanzin AI, Belousov AA. The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia. Patol. Fiziol. Eksper. Ter. 2014:(2):24-27. Russian.

    Google Scholar 

  2. Tregub PP, Kulikov VP, Rucheikin NYu, Belova EV, Motin YuG. Proliferative and Synthetic Activity of Nerve Cells after Combined or Individual Exposure to Hypoxia and Hypercapnia. Bull Exp Biol Med. 2015:159(3):334-336.

  3. Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ. Biophotonics International. 2004:11(7):36-42.

    Google Scholar 

  4. Chen F, Suzuki Y, Nagai N, Peeters R, Sun X, Coudyzer W, Marchal G, Ni Y. Rat cerebral ischemia induced with photochemical occlusion of proximal middle cerebral artery: a stroke model for MR imaging research. MAGMA. 2004:17(3-6):103-108.

    Article  CAS  PubMed  Google Scholar 

  5. Dickhout JG, Krepinsky JC. Endoplasmic reticulum stress and renal disease. Antioxid. Redox Signal. 2009:11(9):2341-2352.

    Article  CAS  PubMed  Google Scholar 

  6. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptorassociated factor 2. Biol. Pharm. Bull. 2003:26(7):931-935.

    Article  CAS  PubMed  Google Scholar 

  7. Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am. J. Physiol. Renal Physiol. 2008:295(2):F323-F334.

    Article  CAS  PubMed  Google Scholar 

  8. Neckár J, Papousek F, Nováková O, Ost’ádal B, Kolár F. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res. Cardiol. 2002:97(2):161-167.

    Article  PubMed  Google Scholar 

  9. Ostergaard L, Simonsen U, Eskildsen-Helmond Y, Vorum H, Uldbjerg N, Honoré B, Mulvany MJ. Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stressproteins in human endothelial cells. Proteomics. 2009:9(19):4457-4467.

    Article  PubMed  Google Scholar 

  10. Pevsner PH, Eichenbaum JW, Miller DC, Pivawer G, Eichenbaum KD, Stern A, Zakian KL, Koutcher JA. A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J. Pharmacol. Toxicol. Methods. 2001:45(3):227-233.

    Article  CAS  PubMed  Google Scholar 

  11. Rybnikova E, Gluschenko T, Tulkova E, Churilova A, Jaroshevich O, Baranova K, Samoilov M. Preconditioning induces prolonged expression of transcription factors pCREB and NFkappa B in the neocortex of rats before and following severe hypobaric hypoxia. J. Neurochem. 2008:106(3):1450-1458.

    CAS  PubMed  Google Scholar 

  12. Tao T, Liu Y, Zhang J, Xu Y, Li W, Zhao M. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res. 2013:1533):52-62.

    Article  CAS  PubMed  Google Scholar 

  13. Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I. Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J. Stroke Cerebrovasc. Dis. 2015:24(2):381-387.

    Article  PubMed  Google Scholar 

  14. Zhan L, Wang T, Li W, Xu Z.C, Sun W, Xu E. Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic preconditioning in adult rats. J. Neurochem. 2010:114(3):897-908.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008:454:455-462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Tregub.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 161, No. 4, pp. 457-461, April, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregub, P.P., Kulikov, V.P., Motin, Y.G. et al. Stress of the Endoplasmic Reticulum of Neurons in Stroke Can Be Maximally Limited by Combined Exposure to Hypercapnia and Hypoxia. Bull Exp Biol Med 161, 472–475 (2016). https://doi.org/10.1007/s10517-016-3441-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3441-z

Key Words

Navigation