Skip to main content
Log in

Anisotropic approach: compact star as generalized model

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We have studied a new class of interior solutions that are singularity free and useful for describing anisotropic compact star objects with spherically symmetric matter distribution. We have considered metric potential \(B^{2}_{0}(r)=\frac{1}{(1-\frac{r^{2}}{R^{2}})^{n}} \), where \(n>2 \). The various physical characteristics of the model are specifically examined for the pulsar PSRJ1903+327 with its current estimated data. According to analysis, every physical need for a physically admissible star is satisfied and all features are acceptable. Further the stability of the model has been examined. Numerous physical characteristics are also highlighted in a graphical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abreu, H., Hernandez, H., Nunez, L.: Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects. Class. Quantum Gravity 24(18), 4631 (2007)

    Article  ADS  MATH  Google Scholar 

  • Bhar, P.: Singularity-free anisotropic strange quintessence star. Astrophys. Space Sci. 356(2), 309–318 (2015a)

    Article  ADS  Google Scholar 

  • Bhar, P.: Strange star admitting Chaplygin equation of state in Finch–Skea spacetime. Astrophys. Space Sci. 359(2), 1–9 (2015b)

    Article  ADS  MathSciNet  Google Scholar 

  • Bhar, P., Rahaman, F.: The dark energy star and stability analysis. Eur. Phys. J. C 75(2), 1–12 (2015)

    Article  ADS  Google Scholar 

  • Bhar, P., Ratanpal, B.: A new anisotropic compact star model having Matese & Whitman mass function. Astrophys. Space Sci. 361(7), 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  • Bhar, P., Maurya, S., Gupta, Y., et al.: Modelling of anisotropic compact stars of embedding class one. Eur. Phys. J. A 52(10), 1–10 (2016a)

    Article  Google Scholar 

  • Bhar, P., Singh, K., Manna, T., et al.: Anisotropic compact star with Tolman IV gravitational potential. Astrophys. Space Sci. 361(9), 1–10 (2016b)

    Article  Google Scholar 

  • Bhar, P., Singh, K., Pant, N., et al.: Compact stellar models obeying quadratic equation of state. Astrophys. Space Sci. 361(10), 1–8 (2016c)

    MathSciNet  Google Scholar 

  • Bhar, P., Singh, K., Pant, N.: Compact star modeling with quadratic equation of state in Tolman VII space–time. Indian J. Phys. 91(6), 701–709 (2017)

    Article  ADS  Google Scholar 

  • Bhar, P., Rej, P., Siddiqa, A., et al.: Finch–Skea star model in \(f (R, t)\) theory of gravity. Int. J. Geom. Methods Mod. Phys. 18(10), 2150106 (2021)

    Article  MathSciNet  Google Scholar 

  • Bodmer, A.: Collapsed nuclei. Phys. Rev. D 4(6), 1601 (1971)

    Article  ADS  Google Scholar 

  • Bondi, H.: The contraction of gravitating spheres. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281(1384), 39–48 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  • Das, S., Rahaman, F., Baskey, L.: A new class of compact stellar model compatible with observational data. Eur. Phys. J. C 79(10), 1–12 (2019)

    Article  Google Scholar 

  • Das, S., Chakraborty, K., Baskey, L., et al.: A study on the effect of anisotropy under Finch-Skea geometry. Chin. J. Phys. 81, 362–381 (2020). 2023

    Article  MathSciNet  Google Scholar 

  • Das, S., Singh, K., Baskey, L., et al.: Modeling of compact stars: an anisotropic approach. Gen. Relativ. Gravit. 53(3), 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Dayanandan, B., Maurya, S., Gupta, Y., et al.: Anisotropic generalization of Matese & Whitman solution for compact star models in general relativity. Astrophys. Space Sci. 361(5), 1–9 (2016)

    Article  Google Scholar 

  • Dayanandan, B., Maurya, S., et al.: Modeling of charged anisotropic compact stars in general relativity. Eur. Phys. J. A 53(6), 1–10 (2017)

    Article  Google Scholar 

  • Dev, K., Gleiser, M.: Anisotropic stars: exact solutions. Gen. Relativ. Gravit. 34(11), 1793–1818 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Dev, K., Gleiser, M.: Anisotropic stars II: stability. Gen. Relativ. Gravit. 35(8), 1435–1457 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Finch, M.R., Skea, J.E.: A realistic stellar model based on an ansatz of Duorah and Ray. Class. Quantum Gravity 6(4), 467 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Gangopadhyay, T., Ray, S., Li, X.D., et al.: Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii. Mon. Not. R. Astron. Soc. 431(4), 3216–3221 (2013)

    Article  ADS  Google Scholar 

  • Geng, J., Li, B., Huang, Y.: Repeating fast radio bursts from collapses of the crust of a strange star. Innovation 100, 152 (2021)

    Google Scholar 

  • Gleiser, M., Dev, K.: Anistropic stars: exact solutions and stability. Int. J. Mod. Phys. D 13(07), 1389–1397 (2004)

    Article  ADS  MATH  Google Scholar 

  • Gupta, Y., Maurya, S.K.: A class of charged analogues of Durgapal and Fuloria superdense star. Astrophys. Space Sci. 331(1), 135–144 (2011)

    Article  ADS  MATH  Google Scholar 

  • Herrera, L.: Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  • Herrera, L., Santos, N.O.: Local anisotropy in self-gravitating systems. Phys. Rep. 286(2), 53–130 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution, vol. 192. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  • Komathiraj, K., Maharaj, S.: Analytical models for quark stars. Int. J. Mod. Phys. D 16(11), 1803–1811 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maharaj, S., Mafa Takisa, P.: Regular models with quadratic equation of state. Gen. Relativ. Gravit. 44(6), 1419–1432 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maurya, S., Nag, R.: MGD solution under Class I generator. Eur. Phys. J. Plus 136(6), 1–34 (2021)

    Article  Google Scholar 

  • Maurya, S., Gupta, Y., Dayanandan, B., et al.: Three new exact solutions for charged fluid spheres in general relativity. Astrophys. Space Sci. 356(1), 75–87 (2015a)

    Article  ADS  Google Scholar 

  • Maurya, S., Gupta, Y., Jasim, M.: Two new exact solutions for relativistic perfect fluid spheres through Lake’s algorithm. Astrophys. Space Sci. 355(2), 303–308 (2015b)

    Article  ADS  Google Scholar 

  • Maurya, S., Gupta, Y., Ray, S., et al.: Anisotropic models for compact stars. Eur. Phys. J. C 75(5), 1–11 (2015c)

    Article  ADS  Google Scholar 

  • Maurya, S., Gupta, Y., Dayanandan, B., et al.: Relativistic anisotropic models for compact star with equation of state \(p= f (\rho )\). Int. J. Mod. Phys. D 26(02), 1750002 (2017)

    Article  ADS  MATH  Google Scholar 

  • Maurya, S., Banerjee, A., Hansraj, S.: Role of pressure anisotropy on relativistic compact stars. Phys. Rev. D 044, 022 (2018)

    MathSciNet  Google Scholar 

  • Maurya, S., Banerjee, A., Jasim, M., et al.: Anisotropic compact stars in the Buchdahl model: a comprehensive study. Phys. Rev. D 044, 029 (2019a)

    MathSciNet  Google Scholar 

  • Maurya, S., Maharaj, S., Kumar, J., et al.: Effect of pressure anisotropy on Buchdahl-type relativistic compact stars. Gen. Relativ. Gravit. 51(7), 1–28 (2019b)

    Article  MathSciNet  MATH  Google Scholar 

  • Murad, M.H., Fatema, S.: Some new Wyman–Leibovitz–Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling. Eur. Phys. J. C 75(11), 1–21 (2015)

    Article  ADS  Google Scholar 

  • Pandya, D., Thomas, V., Sharma, R.: Modified Finch and Skea stellar model compatible with observational data. Astrophys. Space Sci. 356(2), 285–292 (2015)

    Article  ADS  Google Scholar 

  • Rahaman, F., Sharma, R., Ray, S., et al.: Strange stars in Krori–Barua space-time. Eur. Phys. J. C 72(7), 1–9 (2012)

    Article  Google Scholar 

  • Schwarzschild, K.: Sitz. Deut. Akad. Wiss. Berlin. Kl. Math. Phys. 24, 424 (1916)

    Google Scholar 

  • Sharma, R., Maharaj, S.: A class of relativistic stars with a linear equation of state. Mon. Not. R. Astron. Soc. 375(4), 1265–1268 (2007)

    Article  ADS  Google Scholar 

  • Sharma, R., Ratanpal, B.: Relativistic stellar model admitting a quadratic equation of state. Int. J. Mod. Phys. D 22(13), 1350074 (2013)

    Article  ADS  MATH  Google Scholar 

  • Sharma, R., Das, S., Thirukkanesh, S.: Anisotropic extension of Finch and Skea stellar model. Astrophys. Space Sci. 362(12), 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  • Sunzu, J.M., Maharaj, S.D., Ray, S.: Charged anisotropic models for quark stars. Astrophys. Space Sci. 352(2), 719–727 (2014)

    Article  ADS  Google Scholar 

  • Tello-Ortiz, F., Maurya, S., Gomez-Leyton, Y.: Class I approach as MGD generator. Eur. Phys. J. C 80(4), 1–14 (2020)

    Article  Google Scholar 

  • Thirukkanesh, S., Ragel, F., Sharma, R., et al.: Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems: an algorithm. Eur. Phys. J. C 78(1), 1–9 (2018)

    Article  ADS  Google Scholar 

  • Thomas, V., Pandya, D.: Anisotropic compacts stars on paraboloidal spacetime with linear equation of state. Eur. Phys. J. A 53(6), 1–9 (2017)

    Article  ADS  Google Scholar 

  • Vaidya, P., Tikekar, R.: Exact relativistic model for a superdense star. J. Astrophys. Astron. 3(3), 325–334 (1982)

    Article  ADS  Google Scholar 

  • Weber, F.: Pulsars as astrophysical laboratories for nuclear and particle physics (1999). Vol. Bs1, Bristol

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to this paper. Rinkal Patel wrote the main manuscript text and calculation. B. S. Ratanpal checked all the calculations and manuscript .

Corresponding author

Correspondence to Rinkal Patel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratanpal, B.S., Patel, R. Anisotropic approach: compact star as generalized model. Astrophys Space Sci 368, 21 (2023). https://doi.org/10.1007/s10509-023-04171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04171-9

Keywords

Navigation