Skip to main content
Log in

Effect of pressure anisotropy on Buchdahl-type relativistic compact stars

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider exact models for dense relativistic stars with anisotropic pressures and containing Buchdahl-type spacetime geometry. The Buchdahl condition can be transformed to an Euler–Cauchy equation for the gravitational potentials. We solve this condition to find a new exact solution to the Einstein field equations with anisotropic matter distribution. We show that the exact solution produces a realistic model of a compact relativistic star satisfying all physical requirements. The regularity, equilibrium, casuality, stability, energy conditions and compactness limits for a well behaved compact sphere are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  2. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  3. Singh, K.N., Pant, N., Govender, M.: Eur. Phys. J. C 77, 100 (2017)

    Article  ADS  Google Scholar 

  4. Kumar, J., Prasad, A.K., Maurya, S.K., Banerjee, A.: Eur. Phys. J. C 78, 540 (2018)

    Article  ADS  Google Scholar 

  5. Vaidya, P.C., Tikekar, R.: J. Astrophys. Aston. 3, 325 (1982)

    Article  ADS  Google Scholar 

  6. Tikekar, R.: J. Math. Phys. 31, 2454 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  7. Maharaj, S.D., Leach, P.G.L.: J. Math. Phys. 37, 430 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Mukherjee, S., Paul, B.C., Dadhich, N.K.: Class. Quantum Gravit. 14, 3475 (1997)

    Article  ADS  Google Scholar 

  9. Sharma, R., Mukherjee, S., Maharaj, S.D.: Gen. Relativ. Gravit. 33, 999 (2001)

    Article  ADS  Google Scholar 

  10. Gupta, Y.K., Jasim, M.K.: Astrophys. Space Sci. 272, 403 (2004)

    Article  ADS  Google Scholar 

  11. Komathiraj, K., Maharaj, S.D.: J. Math. Phys. 48, 042501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Khugaev, A., Dadhich, N.K., Molina, A.: Phys. Rev. D 94, 064065 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  13. Molina, A., Dadhich, N.K., Khugaev, A.: Gen. Relativ. Gravit. 49, 96 (2017)

    Article  ADS  Google Scholar 

  14. Krori, K.D., Borgohain, O., Das, K.: Phys. Lett. A 132, 321 (1998)

    Article  ADS  Google Scholar 

  15. Finch, M.R., Skea, J.E.F.: Class. Quantum Gravit. 6, 467 (1989)

    Article  ADS  Google Scholar 

  16. Maurya, S.K., Banerjee, A., Hansraj, S.: Phys. Rev. D 97, 044022 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  17. Mak, M.K., Harko, T.: Proc. R. Soc. Lond. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  18. Herrera, L., Ospino, J., Di Prisco, A.: Phys. Rev. D 77, 027502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pandya, D.M., Thomas, V.O., Sharma, R.: Astrophys. Space Sci. 356, 285 (2015)

    Article  ADS  Google Scholar 

  20. Bhar, P., Murad, M.H., Pant, N.: Astrophys. Space Sci. 359, 13 (2015)

    Article  ADS  Google Scholar 

  21. Maurya, S.K., Gupta, Y.K., Ray, S., Dayanandan, B.: Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  22. Murad, M.H., Fatema, S.: Int. J. Theor. Phys. 52, 4342 (2013)

    Article  Google Scholar 

  23. Murad, M.H.: Astrophys. Space Sci. 361, 20 (2016)

    Article  ADS  Google Scholar 

  24. Maurya, S.K., Gupta, Y.K., Smitha, T.T., Rahaman, F.: Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  25. Fuloria, P., Pant, N.: Eur. Phys. J. A 53, 227 (2017)

    Article  ADS  Google Scholar 

  26. Govender, M., Thirukkanesh, S.: Astrophys. Space Sci 358, 39 (2015)

    Article  ADS  Google Scholar 

  27. Maharaj, S.D., Mafa Takisa, P.: Gen. Relativ. Gravit. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  28. Thirukkanesh, S., Ragel, F.C.: Pramana-J. Phys. 78, 687 (2012)

    Article  ADS  Google Scholar 

  29. Mafa Takisa, P., Maharaj, S.D.: Gen. Relativ. Gravit 45, 1951 (2013)

    Article  ADS  Google Scholar 

  30. Herrera, L., Barreto, W.: Phys. Rev. D 87, 087303 (2013)

    Article  ADS  Google Scholar 

  31. Herrera, L., Barreto, W.: Phys. Rev. D 88, 084022 (2013)

    Article  ADS  Google Scholar 

  32. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  33. Leibovitz, C.: Phy. Rev. D 185, 1664 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  34. Pant, N., Mehta, R.N., Pant, M.J.: Astrophys. Space Sci. 330, 335 (2010)

    Article  Google Scholar 

  35. Pant, N.: Astrophys. Space Sci. 331, 633 (2011)

    Article  ADS  Google Scholar 

  36. Herrera, L., Di Prisco, A., Barreto, W., Ospino, J.: Gen. Relativ. Gravit. 46, 1827 (2014)

    Article  ADS  Google Scholar 

  37. Herrera, L., Fuenmayor, E., Leon, P.: Phys. Rev. D. 93, 024047 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  38. Misner, C.W., Sharpe, D.H.: Phys. Rev. 136, B571 (1964)

    Article  ADS  Google Scholar 

  39. Paul, B.C., Chattopadhyay, P.K., Karmakar, S.: Astrophys. Space. Sci. 356, 327 (2015)

    Article  ADS  Google Scholar 

  40. Chattopadhyay, P.K., Deb, R., Paul, B.C.: Int. J. Mod. Phys. D 21, 1250071 (2012)

    Article  ADS  Google Scholar 

  41. Hansraj, S.: Eur. Phys. J. C 77, 557 (2017)

    Article  ADS  Google Scholar 

  42. Bhar, P.: Eur. Phys. J. C 75, 123 (2015)

    Article  ADS  Google Scholar 

  43. Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  44. Sunzu, J.M., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 352, 719 (2014)

    Article  ADS  Google Scholar 

  45. Sunzu, J.M., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 354, 517 (2014)

    Article  ADS  Google Scholar 

  46. Sunzu, J.M., Danford, P.: Pramana J. Phys. 89, 44 (2017)

    Article  ADS  Google Scholar 

  47. Mafa Takisa, P., Maharaj, S.D.: Gen. Relativ. Gravit. 45, 1951 (2013)

    Article  ADS  Google Scholar 

  48. Varela, V., Rahaman, F., Ray, S., Chakraborty, K., Kalam, M.: Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  49. Mafa Takisa, P., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 354, 463 (2014)

    Article  ADS  Google Scholar 

  50. Kileba Matondo, D., Maharaj, S.D.: Astrophys. Space Sci. 361, 221 (2016)

    Article  ADS  Google Scholar 

  51. Maharaj, S.D., Kileba Matondo, D., Mafa Takisa, P.: Int. J. Mod. Phys. D 26, 1750014 (2016)

    Article  ADS  Google Scholar 

  52. Kileba Matondo, D., Mafa Takisa, P., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 362, 186 (2017)

    Article  ADS  Google Scholar 

  53. Thirukkanesh, S., Ragel, F.C.: Astrophys. Space Sci. 352, 743 (2014)

    Article  ADS  Google Scholar 

  54. Newton Singh, K., Bhar, P., Rahaman, F., Pant, N.: J. Phys. Commun. 2, 015002 (2018)

    Article  Google Scholar 

  55. Canuto, V.: Ann. Rev. Astron. Astrophys. 13, 355 (1975)

    Article  ADS  Google Scholar 

  56. Herrera, L.: Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  57. Di Prisco, A.D., Fuenmayor, E., Herrera, L., Varela, V.: Phys. Lett. A 195, 23 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  58. Di Prisco, A., Herrera, L., Varela, V.: Gen. Relativ. Gravit. 29, 1239 (1997)

    Article  ADS  Google Scholar 

  59. Abreu, H., Hernandez, H., Nunez, L.A.: Class. Quantum Gravit. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  60. Knutsen, H.: Mon. Not. R. Astron. Soc. 232, 163 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  61. Buchdahl, H.A.: Astrophys. J. 146, 275 (1966)

    Article  ADS  Google Scholar 

  62. Bondi, H.: Proc. R. Soc. A. 282, 303 (1964)

    Article  ADS  Google Scholar 

  63. Bohmer, C.G., Harko, H.: Gen. Relativ. Gravit. 39, 757 (2007)

    Article  ADS  Google Scholar 

  64. Andreasson, H.: Commun. Math. Phys. 198, 507 (2009)

    Google Scholar 

  65. Mak, M.K., Dobson, P.N., Harko, T.: Mod. Phys. Lett. A 15, 2153 (2000)

    Article  ADS  Google Scholar 

  66. Bohmer, C.G., Harko, T.: Phys. Lett. B 630, 73 (2005)

    Article  ADS  Google Scholar 

  67. Carvalho, G.A., Marinho, R.M., Malheiro, M.: J. Phys.: Conf. Ser. 630, 012058 (2015)

    Google Scholar 

  68. Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    Article  ADS  Google Scholar 

  69. Mafa Takisa, P., Maharaj, S.D., Manjonjo, A.M., Moopanar, S.: Eur. Phys. J. C 77, 713 (2017)

    Article  ADS  Google Scholar 

  70. Bohmer, C.G., Harko, T.: Class. Quantum Gravit. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  71. Dey, M., Bombacci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  72. Harko, T., Cheng, K.S.: Astron. Astrophys. 385, 947 (2002)

    Article  ADS  Google Scholar 

  73. Gondek-Rosinska, D., et al.: Astron. Astrophys. 363, 1005 (2000)

    ADS  Google Scholar 

  74. Haensel, P., Zdunik, J.L.: Nature 340, 617 (1989)

    Article  ADS  Google Scholar 

  75. Frieman, J.A., Olinto, A.: Nature 341, 633 (1989)

    Article  ADS  Google Scholar 

  76. Prakash, M., Baron, E., Prakash, M.: Phys. Lett. B 243, 175 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author SKM acknowledges continuous support and encouragement from the administration of University of Nizwa, and SDM thanks the University of KwaZulu-Natal for support. SDM acknowledges that this work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Maharaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the Appendix we outline the method for finding the solution of field equations and anisotropy factor. Use the transformation in Eq. (11) to get

$$\begin{aligned} X=\sqrt{\frac{K}{(K-1)}}\sqrt{1+\frac{Cr^{2}}{K}} \,\,\,\, and \,\,\,\, p_t(r)-p_r(r)=\varDelta , \end{aligned}$$
$$\begin{aligned}&\frac{d^2Y}{dX^2}+\frac{X}{(1-X^2)}\,\frac{dY}{dX} \nonumber \\&\quad +\frac{1}{(1-X^2)}\,\Bigg (1-K+\kappa \, \varDelta \, K \frac{[(1-K)\,(1-X)]^2}{C\,[\,X^2\,(K-1)-K\,]} \Bigg )\,Y=0. \end{aligned}$$
(44)

We compare Eq. (44) with the standard form

$$\begin{aligned} \frac{d^2Y}{dX^2}+P(X)\,\frac{dY}{dX}+Q(X)\,Y= R(X), \end{aligned}$$
(45)

where

$$\begin{aligned} P(X)= & {} \frac{X}{(1-X^2)}, \\ Q(X)= & {} \frac{1}{(1-X^2)}\,\Bigg (1-K+\kappa \, \varDelta \, K \frac{[(1-K)\,(1-X)]^2}{C\,[\,X^2\,(K-1)-K\,]} \Bigg ), \\ R(X)= & {} 0. \end{aligned}$$

To solve (45) we choose the integrating factor \(u=e^{-\frac{1}{2}\,\int {P(X)}dX}\). Then (45) leads to the following complete solution

$$\begin{aligned} Y(X) = \Bigg \{ \begin{array}{rcl} (1-X^2)^{1/4}\,\,Z(X)~~~ \text{ for } &{} X \le 1, ~~~K\ge 0 \\ (1-X^2)^{1/4}\,\,Z(X)~~~\text{ for } &{} X\le 1, ~~~K\ge 0 \end{array} \end{aligned}$$
(46)

where Z(X) can be determined by the following differential equation

$$\begin{aligned}&\frac{d^2Z}{dX^2}+ \Bigg [ \frac{4\,(1-X^2)\,(1-K)-(3X^2+2)}{4\,(1-X^2)^2} \nonumber \\&\quad + \frac{\kappa \, \varDelta \, K\,(1-K)^2\,(1-X)}{C\,[\,X^2\,(K-1)-K\,]} \Bigg ]Z=0. \end{aligned}$$
(47)

In order to solve Eq. (47) we choose the expression for anisotropy factor \(\varDelta \) as

$$\begin{aligned} \varDelta =\frac{\beta \,C\,[\,4\,(1-X^2)\,(1-K)-(3X^2+2)\,]\,(X^2\,K-X^2-K)}{4\,\kappa \,K\,(1-X^2)^3\,(K-1)^2}. \end{aligned}$$
(48)

We can study the behavior of the model for small r close to the centre of the star. The analytical expressions of the anisotropic factor \(\varDelta \) using a series expansion leads to

$$\begin{aligned} \varDelta= & {} \frac{\beta \,C^2\,r^2}{4\,\kappa \,(K-1)^5}\,\big [(-2+9 K- 15 K^2- 10\, K^3) \nonumber \\&-(1- 12 K + 105 K^2- 40 K^3) Cr^2 \nonumber \\&+(9- 123\,K+ 60 K^2)\,C^2r^4 - (42- 24 K) C^3r^6+O(r^8) \big ]. \end{aligned}$$
(49)

The expressions of physical parameters \(p_r\), \(p_r\), \(\rho \), \(V^2_r\) and \(V^2_t\) at the centre become

$$\begin{aligned} (\,p_{r}\,)_{r=0}= & {} (\,p_{t}\,)_{r=0}= \frac{1}{\kappa }\,\left[ \frac{92\,C(501F+13001)}{125(141F+1479)}-\frac{3\,C}{7}\right] , \end{aligned}$$
(50)
$$\begin{aligned} (\,\rho \,)_{r=0}= & {} \frac{9\,C}{7\,\kappa }, \end{aligned}$$
(51)
$$\begin{aligned} (\,V^{2}_{r}\,)_{r=0}= & {} \frac{-7}{30\,C}\Bigg [ \frac{1}{(0.383F+4.017)^2}\Big ((0.383F+4.017)\bigg ( -\frac{12C}{7}(1.728F+10.378)\nonumber \\&+2C(2.866F+10.664) \bigg )-2\,C\,F_1 \Big )-\frac{6C}{7}\Bigg ], \end{aligned}$$
(52)
$$\begin{aligned} (\,V^{2}_{t}\,)_{r=0}= & {} \frac{-7}{30\,C}\Bigg [ \frac{1}{(0.383F+4.017)^2}\Big ((0.383F+4.017)\bigg ( -\frac{12C}{7}(1.728F+10.378)\nonumber \\&+2C(2.866F+10.664) \bigg )-2C\,F_1 \Big )+\frac{6C}{7}+\frac{15\beta \,C}{11}\Bigg ], \end{aligned}$$
(53)

where \( F=\frac{B}{A} \) and \(F_1=(1.728F+10.378)(0.951F+2.081)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Maharaj, S.D., Kumar, J. et al. Effect of pressure anisotropy on Buchdahl-type relativistic compact stars. Gen Relativ Gravit 51, 86 (2019). https://doi.org/10.1007/s10714-019-2570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2570-x

Keywords

Navigation