Skip to main content
Log in

Charged anisotropic strange stars in \(f(\mathcal{G},\mathcal{T})\) gravity

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this work, we explore charged anisotropic strange stars in the framework of \(f(\mathcal{G},\mathcal{T})\) gravity (\(\mathcal{G}\) and \(\mathcal{T}\) are the Gauss-Bonnet invariant and trace of the energy-momentum tensor, respectively) by considering the minimal model \(f(\mathcal{G},\mathcal{T})=\omega \mathcal{G}^{k}+\chi \mathcal{T}\), \(\omega \in \mathbb{R}\), \(k\in \mathbb{R}^{+}\) and \(\chi \) is the coupling parameter. For this purpose, we employ the condition of embedding class-I to obtain the ansatz describing the geometry inside the stellar configuration. Further, to determine the complete solution of modified Einstein-Maxwell equations, we use the MIT bag model equation of state, which relates the density and pressure by involving the bag constant (which balances the inward directed bag pressure) and describes the essential features of strange quark matter distribution inside the stellar system. We match the interior and exterior geometries to evaluate the set of unknown constants by choosing Reissner-Nordström metric as an exterior geometry. The graphical analysis of the developed solution is done by using observed mass and radius of the star candidate 4U 1608-52 corresponding to different values of the bag constant and coupling parameter. To examine the physical viability and stability of the model, we investigate the behavior of energy constraints, causality condition, Herrera cracking approach, compactness factor, and redshift function. We conclude that the charged anisotropic strange stars model is physically viable and stable under all considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by all authors. The first draft of the manuscript was written by [Aroob and Amna] and [Muhammad Sharif] finalized this draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Sharif.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \rho &=\frac{1}{2r^{2}(8\pi +\chi )(1+c_{3}r^{2})^{2}}\Big[r\big\{ r \big(\frac{6\sqrt{c_{3}}c_{2}}{\sqrt{c_{3}}c_{2}r^{2}+2c_{1}} \\ &+c_{3}(- \frac{12c_{1}}{\sqrt{c_{3}}c_{2}r^{2}+2c_{1}} +4Br^{2} (8\pi +\chi )+9) \\ &+2c_{3}^{2}Br^{4}(8\pi +\chi )+12c_{3} \mathcal{G}''+2B(8\pi +\chi )\big) \\ &+ \frac{12\sqrt{c_{3}}\mathcal{G}'(2-c_{3}r^{2})(2\sqrt{c_{3}}c_{1}+3c_{3}c_{2}r^{2}+2c_{2})}{(1+c_{3}r^{2})(\sqrt{c_{3}}c_{2}r^{2}+2c_{1})}\big\} \Big], \end{aligned}$$
(35)
$$\begin{aligned} p_{r} =&\frac{1}{2r^{2}(8\pi +\chi )(1+c_{3}r^{2})^{2}}\Big[r\big\{ r \big(\frac{2\sqrt{c_{3}}c_{2}}{\sqrt{c_{3}}c_{2}r^{2}+2c_{1}} \\ +&c_{3}(- \frac{4c_{1}}{\sqrt{c_{3}}c_{2}r^{2}+2c_{1}} -4Br^{2} (8\pi +\chi )+3) \\ -&2c_{3}^{2}Br^{4}(8\pi +\chi )+4c_{3} \mathcal{G}''-2B(8\pi +\chi )\big) \\ +& \frac{4\sqrt{c_{3}}\mathcal{G}'(2-c_{3}r^{2})(2\sqrt{c_{3}}c_{1}+3c_{2}c_{3}r^{2}+2c_{2})}{(1+c_{3}r^{2}) (\sqrt{c_{3}}c_{2}r^{2}+2c_{1})}\big\} \Big], \end{aligned}$$
(36)
$$\begin{aligned} p_{t} =& \frac{1}{2r(8\pi +\chi )(24\pi +5\chi )(1+c_{3}r^{2})^{3}(\sqrt{c_{3}}c_{2}r^{2}+2c_{1})} \\ \times& \Big[r\Big\{ 2 c_{3}^{7/2}c_{2}r^{6}(8\pi +\chi )(3\mathcal{G}^{2}r^{2}+7Br^{2}\chi \\ +&24\pi Br^{2}-3)+3c_{3}^{5/2}c_{2}r^{4} \big(\chi (6\mathcal{G}^{2}r^{2}+14Br^{2}\chi+11) \\ +&8\pi (6\mathcal{G}^{2}r^{2}+20Br^{2}\chi +3)+384\pi ^{2}Br^{2} \big) \\ +&c_{3}^{3/2}c_{2}\Big(18\mathcal{G}^{2}r^{4} (8\pi +\chi )+576\mathcal{G}(8\pi +\chi ) \\ +& r^{2}\big(24\pi (20Br^{2}\chi +19) +\chi (42Br^{2}\chi +97) \\ +&1152\pi ^{2}Br^{2}\big)\Big)+4c_{1}c_{3}^{3}r^{4}(8\pi +\chi )(3 \mathcal{G}^{2}r^{2} \\ +&7Br^{2}\chi +24\pi Br^{2}-3) +2c_{1}c_{3}^{2}r^{2}\big(24\pi (6\mathcal{G}^{2}r^{2} \\ +&20Br^{2} \chi -7)+\chi (18\mathcal{G}^{2}r^{2}+42Br^{2} \chi -13) \\ +&1152\pi ^{2}Br^{2}\big)-4\sqrt{c_{3}}\mathcal{G}''(1\,{+}\,c_{3}r^{2}) \big(2\sqrt{c_{3}}c_{1}(24\pi \,{-}\,5\chi \!) \\ +&c_{2}c_{3}r^{2}(24\pi -5\chi )-24c_{2}(8\pi +\chi )\big) \\ +&2c_{1}c_{3}\big(24\pi (6 \mathcal{G}^{2}r^{2}+20Br^{2}\chi -5)+\chi (18\mathcal{G}^{2} r^{2} \\ +&42Br^{2}\chi -7)+1152\pi ^{2}Br^{2}\big) \\ +&2\sqrt{c_{3}}c_{2} \big(\chi (3\mathcal{G}^{2}r^{2}+7Br^{2}\chi +29) \\ +&8\pi (3\mathcal{G}^{2}r^{2}+10Br^{2}\chi +21)+192\pi ^{2}Br^{2} \big) \\ +&4c_{1}(8\pi +\chi )(7B\chi +24\pi B+3\mathcal{G}^{2})\Big\} \\ -&4\sqrt{c_{3}}\mathcal{G}'\big(2c_{3}^{3/2}c_{1}r^{2}(5 \chi -24\pi ) +3c_{3}^{2}c_{2}r^{4}(40\pi +13\chi ) \\ +&4\sqrt{c_{3}}c_{1}(24\pi -5\chi )+4c_{2}c_{3}r^{2}(72\pi +\chi ) \\ -&4c_{2}(23 \chi +120\pi )\big)\Big]. \end{aligned}$$
(37)

Here, the expressions of \(\mathcal{G}\) and its derivatives are given as

$$\begin{aligned} \mathcal{G} =&- \frac{48c_{3}^{3/2}c_{2}}{(1+c_{3}r^{2})^{3}(\sqrt{c_{3}}c_{2}r^{2}+2c_{1})}, \\ \mathcal{G}' =& \frac{96c_{3}^{2}c_{2}r(6\sqrt{c_{3}}c_{1}+4c_{2}c_{3}r^{2}+c_{2})}{(1+c_{3}r^{2})^{4} (\sqrt{c_{3}}c_{2}r^{2}+2c_{1})^{2}}, \\ \mathcal{G}'' =&- \frac{1}{(1+c_{3}r^{2})^{5}(\sqrt{c_{3}}c_{2}r^{2}+2c_{1})^{3}} \\ \times&\Big[96c_{3}^{2}c_{2} \big\{ c_{3}^{3/2} c_{2}r^{4}(106\sqrt{c_{3}}c_{1}+15c_{2}) +36c_{3}^{5/2}c_{2}^{2}r^{6} \\ +&\sqrt{c_{3}}r^{2}(84c_{1}^{2}c_{3}+8 \sqrt{c_{3}} c_{1}c_{2}+3c_{2}^{2}) \\ -&2c_{1}(6\sqrt{c_{3}}c_{1}+c_{2}) \big\} \Big]. \end{aligned}$$
$$\begin{aligned} \Delta =& \frac{3}{r(8\pi +\chi )(24\pi +5\chi )(1+c_{3}r^{2})^{3} (\sqrt{c_{3}}c_{2}r^{2}+2c_{1})} \\ \times&\Big[r\Big\{ c_{3}^{7/2}c_{2}r^{6}(8\pi +\chi ) (\mathcal{G}^{2}r^{2}+4Br^{2}\chi +16\pi Br^{2}-1) \\ +&3c_{3}^{5/2}c_{2}r^{4} \big(\mathcal{G}^{2}r^{2}(8\pi +\chi )+4Br^{2} \chi ^{2} +48\pi Br^{2}\chi \\ +&128\pi ^{2}Br^{2}+\chi \big) +c_{3}^{3/2}c_{2} \big(3\mathcal{G}^{2}r^{4}(8\pi +\chi ) \\ +&96\mathcal{G}(8\pi {+}\chi ) {+}4r^{2}(3\chi (1+Br^{2}\chi )\,{+}\,2\pi (18Br^{2}\chi {+}7) \\ +&96\pi ^{2}Br^{2}) \big)+2c_{1}c_{3}^{3}r^{4} (8\pi +\chi )(\mathcal{G}^{2}r^{2}+4Br^{2}\chi \\ +&16\pi Br^{2}-1)+2c_{3}^{2}c_{1}r^{2} \big(3\chi (\mathcal{G}^{2}r^{2}+4Br^{2}\chi -1) \\ +&8\pi (3\mathcal{G}^{2}r^{2}+18Br^{2}\chi -4)+384\pi ^{2}Br^{2} \big) \\ -&16\sqrt{c_{3}} \mathcal{G}''(1+c_{3}r^{2})\big(4\pi \sqrt{c_{3}}c_{1} +2\pi c_{2}c_{3}r^{2} \\ -&c_{2}(8\pi +\chi )\big) +2c_{1}c_{3}\big(24 \pi (\mathcal{G}^{2}r^{2}+6Br^{2}\chi -1) \\ +&\chi (3\mathcal{G}^{2}r^{2} +12Br^{2}\chi -2)+384\pi ^{2}Br^{2}\big) \\ +& \sqrt{c_{3}}c_{2}\big( \chi (\mathcal{G}^{2}r^{2}+4Br^{2}\chi +8)+8\pi (\mathcal{G}^{2}r^{2} +6Br^{2}\chi \\ +&6)+128\pi ^{2}Br^{2}\big)+2c_{1}(8\pi +\chi )\big(4B(4 \pi +\chi ) +\mathcal{G}^{2}\big)\Big\} \\ -&16\sqrt{c_{3}}\mathcal{G}'\big(-4\pi c_{3}^{3/2}c_{1}r^{2}+c_{3}^{2}c_{2}r^{4}(2 \pi +\chi ) \\ +&8\pi \sqrt{c_{3}}c_{1} +c_{2}c_{3}r^{2} (16\pi +\chi ) -c_{2}(16\pi +3\chi )\big)\Big]. \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Naeem, A. & Ramzan, A. Charged anisotropic strange stars in \(f(\mathcal{G},\mathcal{T})\) gravity. Astrophys Space Sci 367, 21 (2022). https://doi.org/10.1007/s10509-022-04052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04052-7

Keywords

Navigation